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Mechanisms of plant responses to salinity stress

Abstract. Environmental stress is a major area of scientific interest because it limits the
productivity of both plants and crops. Anthropogenic activities have exacerbated the issue even
more. As a result, salt stress appears to be a significant barrier to plant and crop productivity.
Salinity has a variety of effects on plants, including osmotic effects and ion-specific toxicity, as well
as proline accumulation and sulphur assimilation. Plants known as halophytes have a high salt
tolerance, allowing them to survive and thrive in extremely saline conditions. The study of
halophytes aids our comprehension of important adaptations required for survival in high salinity
environments. Therefore, enhancing plant salt tolerance as well as increasing agricultural yield
and quality of crops in saline lands is of vital importance. Here, we look at what we know about
how salinity affects plant metabolism and how plants deal with it.
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Introduction

Over time, plants have developed several adaptation strategies to changing environmental
conditions such as temperature, light, mineral concentrations, water, and other abiotic, biotic factors.
One of the oldest and most significant worldwide abiotic pressures impacting agricultural output is soil
salinity. According to the Food and Agricultural Organization (2008), salt affects around 6% of the
world's total land surface or roughly 800 million  hectares of land
(http://www.fao.org/ag/agl/agll/spush/). Furthermore, by 2050, it is estimated that roughly half of all
arable land would be damaged by salt stress [1,2]. As a result, there is a pressing need to develop
approaches to mitigate the negative impacts of salt stress and to implement measures to boost crop
yield in saline environments. Salinity has an impact on a variety of physiological processes in cell
metabolism, including photosynthesis, protein synthesis, energy, and lipid metabolism, as well as
causing growth reduction. Plant growth is influenced by ionic and osmotic effects, nutritional
imbalances, and oxidative stress. For sustainable crop production, it is therefore vital to understand the
physiological processes and molecular mechanisms that plants use to build salt resistance [3,4].

Salt Stress: Consequences and Mechanism of Detoxification

Plants are affected by soil salinity in two ways. High salt concentrations in the soil make it
difficult for roots to draw water, and high salt concentrations in the plant can be hazardous [6,7].

Salt stress causes plants to accumulate excessive amounts of sodium (Na*) and chloride (Cl),
disrupting the vital nutrient balance. Plants adapt to salt stress to maintain a suitable K*/Na* ratio in the
cytosol. Furthermore, excessive formation of reactive oxygen species (ROS) that obstruct physiological
activities is an inescapable consequence of elevated Na* and CI- buildup in plants. High levels of
reactive oxygen species (ROS) can oxidize photosynthetic pigments, proteins, lipids, and nucleic acids
[8,9]. In transgenic cabbage plants and salt-tolerant cultivars, controlling ROS generation and
scavenging in the chloroplast has been demonstrated to be critical for salinity tolerance [9,10]. ROS
serves as a stress signal, triggering acclimation and defense systems that, in turn, mitigate stress-related
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oxidative damage [11-13]. H2O? generated by apoplastic polyamine oxidase has recently been
demonstrated to alter salinity stress signaling in tobacco and to play a role in the plant response balance
between stress tolerance and cell death [14,15]. DNA damage from excessive ROS generation includes
base deletion, pyrimidine dimers, cross-links, strand breakage, base modification, and activation of
programmed cell death [16]. As a result, plants have numerous detoxification systems to protect cellular
components from ROS [17].

Plant salt tolerance systems can be classified as either low-complexity or high-complexity.
Changes in various metabolic pathways are involved in low-complexity processes. Selective ion
accumulation or exclusion, control of ion uptake by roots and transport into leaves, ion
compartmentalization at the cellular and whole-plant levels, synthesis of compatible solutes, changes in
membrane structure, induction of antioxidative enzymes, and other changes are examples of these
changes [18,19]. Changes that protect major processes like photosynthesis and respiration, such as water
use efficiency, and those that preserve important features like cytoskeleton, cell wall, or plasma
membrane—cell wall interactions [5,20], as well as chromosome and chromatin structure changes, such
as DNA methylation, polyploidization, amplification of specific sequences, or DNA elimination [21,22],
are examples of high-complexity mechanisms. Low-complexity mechanisms are thought to be triggered
in a coordinated manner to safeguard higher-order processes [23].

Salt Tolerance in Halophyte Plants

Plants may be split into two types based on their resistance to salinity: glycophytes and
halophytes. Halophytes are a kind of halophyte that can complete their life cycle at a salt concentration
of at least 200 mM NaCl and makeup around 1-2% of the world's flora [24,25]. Some of the more
extreme halophytes termed halophytes, can grow and produce biomass at seawater salinities. Suaeda
fruticosa, which grows in association with Arthrocnemum macrostachyum, was reported to exhibit its
highest biomass production rate at 400-600 mM NaCl, with little mortality when grown at up to 1000
mM NaCl [26,27].

Halophytes are phylogenetically varied plant species that belong to a variety of plant families,
including both dicots and monocots. They are plants that live in one of two types of natural habitats: (1)
habitats with high levels of brackish water in the soil that frame coastal lines in both tropical (e.g.,
mangrove ecosystems) and temperate (e.g., arid and semi-arid inland regions where annual evaporation
rates exceed precipitation); and (2) arid and semi-arid inland regions where annual evaporation rates
exceed precipitation. Salts are released from basal rocks in these areas, rising to the top layer of soil by
capillary action, where they precipitate and induce soil salinization. There are very limited
opportunities to use halophytic plant species as crops although there are occasional outliers, such as
Salicornia from the Chenopodiaceae family [28,29].

Salicornia and Sarcocornia Plants

Salicornia and Sarcocornia, genera that naturally survive in coastal salt marshes from the Arctic to
the Mediterranean and are frequently subjected to daily tides, are promising prospects for the
establishment of novel halophytes as crop species.

On the sea coasts, salt-tolerant species of both genera are commonly referred to as "pioneer
plants" [30-32]. Salicornia is a novel vegetable crop that can be watered with saltwater or very saline
water. Salicornia is a salt-tolerant plant that can be watered with water that contains as much salt as
saltwater [33,34]. The perennial Sarcocornia differs from the annual Salicornia by its distinct perennial
growth habit [30,35] and floral arrangement peculiarities [32,36]. Both genera contain succulent shoots
that may be utilized to grow green crops, but the yields and nutritional value of each are different
[37,38].
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Salicornia is a vegetable with leafless shoots that resemble green asparagus that has been
introduced to the European market. The young fleshy tips of this green vegetable are in high demand in
gourmet kitchens, not only because of their salty flavor, but also because of their high nutritional
content in terms of minerals, antioxidants, and vitamins like vitamin C and [-carotene [33,38].
Importantly, a halophyte crop must be capable of high-yield production under salty circumstances to be
economically viable [34,39].

Involvement of Sulphur Containing Compounds in Salt Tolerance

Mineral nutrient levels are important for crop yield and quality. The mineral nutrition and
sustainability of crops are both complicated in a saline environment. Reports on the effect of the
interaction between salinity level and mineral nutrients on salt tolerance are available [29,40]. For
example, an adequate supply of sulfur (S) has been shown to enhance growth and photosynthetic
activity to a great extent, and to protect against the negative effects of salt stress on barley crops [41].
Through S-N mediated metabolite synthesis of antioxidant defense compounds in Olieferous brassicas
cultivars, plant N and S supply played an important role in plant growth, development, and
productivity [42].

Sulphur is found in a wide range of compounds, such as polysaccharides, iron-sulphur clusters,
lipids, as well as a broad variety of biomolecules such as vitamins (e.g biotin and thiamine), cofactors
(e.g CoA and S-adenosyl- methionine) peptides (e.g glutathione and phytochelatins), secondary
products (allyl cysteine sulphoxides and glucosinolates) and the S containing amino acids cysteine and
methionine [43,44]. Thiols can react with a wide range of agents, including free radicals, reactive oxygen
species, and cytotoxic electrophilic organic xenobiotics, thanks to cysteine residues. As a result, sulphur
metabolism is critical in plant stress responses [45—47].

Plants with high antioxidant levels have a better ability to scavenge ROS and so deal with higher
salt concentrations [15,48]. As a result, increased antioxidant compound synthesis can be exploited as a
future selection factor in crop breeding for salt tolerance [49]. Reduced glutathione (GSH) is one of the
antioxidants involved in scavenging ROS and maintaining steady-state ROS levels.

GSH is a tripeptide that is present in high amounts throughout the cell [50,51]. During H202
breakdown by GSH, the ratio of GSH to its oxidized form, glutathione disulfide (GSSG), is critical for
maintaining redox balance in the cell [51-53]. Several plants, including tomato, wheat, and the
halophyte Myrothamnus flaberllifolia [51,54,55], have been found to benefit from maintaining a high
GSH/GSSG ratio.

The activity rates of serine acetyl transferase (SAT) and O-acetyl serine thiol lyase (OASTL) rise in
plants subjected to salinity stress, promoting a greater rate of cysteine biosynthesis, which results in
enhanced GSH production for defensive responses to salt stress-induced ROS [3]. Many studies have
been reported in which S assimilation was improved to generate glutathione. Brassica napus treated with
saltwater conditions boosted its S assimilation rate and cysteine and GSH production significantly
[51,56]. Salt stress has been linked to changes in S assimilation enzymes in broccoli, and Arabidopsis
[41,47,57] found that salt stress impacted root thiol concentration via modifying the rate of S
assimilation. Transgenic techniques have also proven successful in improving plant salt tolerance
capability by modifying S metabolism. Increased resistance to oxidative stress was shown when the
sulfate transporters, ATP-sulfurylase, Cys, OAS, and GSH were overexpressed [46,58]. Thus, employing
genetic engineering to change the regulation of S partitioning and manipulate the production of S-
containing molecules in plants might be a viable strategy for enhancing salt tolerance [59,60].

Regulation of Sulfur Assimilation
The absorption of inorganic sulfate by the sulfate transporters SULTR 1,2 is generally the first step
in plant sulfur metabolism, and it is fueled by the proton motive force provided by ATPase [60,61].
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Sulphate reduction activation is the most common pathway for assimilation, and it occurs in plastids
[44,62]. The adenylylation of sulfate, mediated by ATP sulfurylase (ATPS), generates adenosine 5'-
phosphosulfate, which starts the sulfate reduction pathway (Fig 1). (APS). The plastidic enzyme APS
reductase then converts APS to sulfite (APR). Sulfite reductase also converts the hazardous sulfite to
sulfide (SiR). Sulfide is then integrated into cysteine in a process mediated by the enzyme OAS-TL
[60,63]. Sulfide is combined with O-acetylserine (OAS), which is catalyzed by SAT.

Most sulfur compounds are generated from cysteine, which is the major intermediate [see Fig 1
and [62]]. Cysteine can also be used as a precursor for the production of methionine, which is then
integrated into proteins or transformed into S-adenosyl methionine (SAM) by SAM synthetase after a
reaction with ATP. The two principal S products, cysteine, and methionine, need interactions with both
N and C metabolism. The coordinated actions of S, N, and C metabolism in plants are believed to
improve salt stress tolerance and aid the S assimilatory reduction route for salt stress control in plants
[4].

As previously mentioned, sulfate assimilation in plants is highly documented. However, only
scarce information exists on sulfate assimilation in halophytes exposed to salinity. Thus, not much is
known about the behavior of the biochemical and molecular components of sulfate assimilation in
halophytes [40,64].
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Figure 1. Schematic representation of the sulfate reduction pathway [3]

20 Ne 1(142)/2023 AH. Tymuaes amvindazo EYY Xabapuivicel. BuoAozusaviy 2oanmdap cepuscol
ISSN(Print) 2616-7034 eISSN 2663-130X



M.Zh. Aiymbay, K.Ye. Zhanassova, A.Zh. Akbassova, S.B. Zhangazin,
D.N. Auganova, M.K. Beissekova, A.B. Kurmanbayeva

Mechanisms of proline stress protection

The accumulation of proline is one of the most critical changes in the metabolism of plants when
they are under a lot of salt stress. [65].

In plants, intracellular proline levels have been discovered to expand by>100-fold under stress.
Proline accumulation in plants happens throughout the presentation on different stresses, including
salt, drought, UV radiation, and oxidative stress [66]. Under stress conditions (e.g., drought, salinity),
proline accumulation for plants includes complementary regulation of pyrroline-5-carboxylate
synthetase (P5CS) and proline dehydrogenase (PRODH). Over higher plants, biosynthesis from
claiming proline happens using two pathways relying upon the relative accessibility of the elective
substrates, glutamate (Glu) and ornithine (Orn). The Glu pathway starts for P5CS by reducing Glu with
ATP and NAD(P)H'H* to glutamate-semialdehyde (GSA), which transforms to pyrroline-5-carboxylate
(P5C) spontaneously. For proline biosynthesis, the Orn pathway needs to be mostly acknowledged as an
elective pathway. Orn is transaminate by ornithine-d-aminotransferase (OAT), which produces GSA
and P5C, which is then subsequently reduced to proline by pyrroline-5-carboxylate reductase (P5CR)
[67]. P5CS activity (Glu pathway) expanded upon salt stress treatment, same time OAT action (Orn
pathway) remained unchanged, implying that the Glu pathway instead of the Orn pathway assumes an
additional huge part on proline amassing throughout osmotic regulation in salt stress [65].

During salt stress, proline was shown to protect Complex II of the mitochondrial electron
transport chain, stabilizing mitochondrial respiration.

Under specific conditions, the P5C—proline cycle can deliver electrons will mitochondrial electron
transport without producing glutamate and, under specific conditions, could produce more ROS in the
mitochondria [68]. Proline catabolism is, therefore, a critical regulator for cell division ROS equalization
and impacts various extra regulatory pathways. The certainty that proline might go about as a signaling
molecule and also impact protection pathways, and control complex metabolic and developmental
processes offer extra chances for plant improvement [5,68].

In the halophyte species, proline might have been sequestered will vacuoles in non-stressed
plants, while in salt-stressed plants, a high proline content might have been distinguished in the cytosol,
suggesting the vitality of de novo proline biosynthesis and also transport for proline accumulation [7].

The mechanisms by which proline alleviates anxiety could be classified into two broad categories.
One possibility is that organisms gather proline by increasing proline biosynthesis, with proline acting
as an osmolyte, a chemical chaperone, and a direct scavenger of OH- or O2. A second system relies
ahead on dynamic proline metabolic flux and linkages with different metabolic pathways. Proline
metabolic flux prompts cell insurance by helping maintain cellular energy and NADP*/NADPH balance,
enacting indicating pathways that push cell survival, What's more helping should different pathways
for example, such those tricarboxylic acid cycle and GSH biosynthesis [66,67]

Conclusion

In the future, soil salinity will continue to be a danger to agricultural productivity and food
security. The most efficient strategy to solve his environmental problem is to cultivate salt-tolerant
crops. Under salt stress, sulfate needs for metabolic adaption responses are increasing, indicating the
importance of sulfur-containing metabolites. Sulfur-containing compounds have two functions in
plants: they serve as structural components for a variety of cellular components as well as for cellular
interaction with the environment as signaling molecules. Changes in ROS and ROS-related enzymes are
also early stress indicators. Early identification of salinity stress impact may be possible using molecular
and oxidative stress. Still, each stress signature has its limitations, whether they are morphological,
physiological, oxidative, or molecular changes in plants. Chlorophyll content, proline accumulation,
stress protectants, and membrane stability are all investigated using physiological and biochemical
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markers. These physiological markers, especially changes in plants' levels of proline, are important for
making plants more resistant to salt.

Funding. The work was funded by the Ministry of Education and Science Republic of Kazakhstan
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M.2K. Anpim6ari, K.E. JKanacosa, A.JK. AkGacosa, C.b. JKanrasun, 4.H. Ayranosa,
M.K. Bericekosa, A.b. KypmanOaesa
A.H. I'ymuaes amoindazor Eypasus yammuix ynusepcumemi, Acmana, Kasaxcman

Ty3abLabIK cTpeciHe eciMgikTepaiH Xayan Oepy MexaHM3MAepi

AngaTtna. DKOAOIMAABIK CTPECC FRIABIMU KBISBIFYIIBLABIKTBIH HeTi3Ti cadackl OOABIN TabbLAaAbl,
OIITKEHi 04 6CiMAIKTepAiH Ae, AaKblAAapAbIH Aa ©HIMAIAITIH IeKTelAl. AHTpOIIOTeHAIK OeaceHAiaik Oya
MacedeHi oOgaH opi YIIBIKTBIpABL. HoTimkeciHge, Ty34bl cTpecc eciMAIKTEp MeH JaKblagapAblH
OHiMAlJAiTiHe alTapAbIKTall Kedepri keaTipedi. Ty3ablabIK eciMAiKTepre ospTypAi ocep eTeAi, COHBIH
iIiHAe OCMOTMKAABIK 9cep >KoHe MOH-CHeIM(UKAABIK VBITTBIABIK, COHBIMEH KaTap HPOAMHHIH
JKMHaAybl >KoHe KYKIpTTiH accummaAnuscel. I'azodurrep gen atasaThlH ©ciMAiKTep Ty3fa >KOFaphbl
TesiMaiaikke 1e, Oya oaapFa TY3Abl CTpecc >KafdallblHAa eMip cypyre >KoHe ecyre MYMKiHAIK Oepei.
laaodpurrepai 3eprrey >KOfapbl TY3ABIABIK JKarjaliblHAa e©Mip Ccypy YIIH KakeT MaHBI3AbI
Oeltimaeayaepai Tycinyre kemekreceai. COHABIKTaH ©CIMAIKTEPAIH Ty3Fa TO3IMAIAIriH apTTHIPY >KoHe
TY34Bl >Kepaepae AaKblAJapAblH ©HIMAiAiri MeH camachlH apTThIpy ©Te MaHbI3AbL. MyHaa 06i3
TY3ABLABIKTBIH ©CIMAIKTEp aAMacybIHbIH 9pTYpAi acliekTidepiHe >KoHe OHBIH ©CIMAIKTepre Te3iMAidik
CTpaTeTusChbIHa acepi TypaAbl TYCiHIiIiMi3Al KapacTbIpaMbI3.

Tyitin ce3aep: Ty3Abl cTpecc, Salicornia xaHe Sarcocornia eciMAiKTepi, KyKipTTiH acCUMUASAIUICEH,
IIPOAVHHIH XIHaAYBI, OTTeriHiH OeaceHai popmaaapsl (ObP), raaodpuTri ecimaikrep.
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M.K. Anpiv6ari, K.E. JKanacosa, A.JK. AkbOacosa, C.b. JKaurasun, 4.H. Ayranosa,
M.K. bericekosa, A.b. KypmanOaeBa
Eepasuticxuti nayuonarorot yrusepcumem um. /1.H. l'ymuresa, Acmana, Kasaxcman

MexaHn3mbl OTBeTa pacTeHIMIL Ha COA€BOM CTpecC

AnHOoTammsl. DKOAOTMYECKUII CTpecc sBAsSeTCS OCHOBHOM 004acThl0 HAay4yHOIO MHTepeca,
IIOCKOABKY OH OIpaHM4YMBaeT IMPOAYKTUBHOCTh KaK pacTeHMil, TaK M CeAbCKOXO3AMCTBeHHBIX KyABTYP.
AHTpONIOTeHHasl AesATeABHOCTD ellle 0oabllle ycyryOmaa 3Ty nmpoOaemy. B pesyabraTte coaesoir crpecc,
IIO-BUAVMMOMY,  SIBASIETCA  CEPhe3HBIM  IIPEIATCTBUEeM A4S IPOAYKTUMBHOCTM — pacTeHMil U
CeAbCKOXO3JCTBeHHBIX KyAbTYp. COA€HOCTh OKa3blBaeT pa3AM4HOe BO3eNICTBIe Ha PacTeHIs], BKAIoJas
ocmoTrmyecknii 5¢G@PeKT 1 MoHoCIenMPUIecKyl0 TOKCUMYHOCTh, a TaK’Ke HaKOILAeHMe IIpOAMHA U
acCUMUAAIMIO cepbl. PacTeHns, mM3BecTHbIe KakK raaouThl, 001a4al0T BBLICOKON COA€yCTONYMBOCTLIO,
4YTO MO3BOAseT MM BBDKMBATh M IIPOLIBETaTh B YpPEe3BBIYAIHO 3aCOAEHHBIX yCAOBMsAX. VIsyuenme
ra20(pUTOB CITIOCOOCTBYET ITOHMMAaHMIO BaXKHBIX ajaIlTalinii, HEOOXOAMMBIX 4451 BbIXKMBAHNS B YCAOBUSX
BBICOKOI coaeHOCTH. [I05TOMY MOBBIIIeHNe COAeyCTOMYMBOCTY PACTeHNIA U ITOBBIIIeHNe YPOKalTHOCTI
U KayecTBa CeAbCKOXOB3AVCTBEHHBIX KyAbTYp Ha 3aCOAEHHBIX 3eMAAX MMEIOT >KM3HEHHO Ba’kKHOe
3HayeHue. 34eCh MBI pacCMOTPMM Hallle ITIOHVMMAaHUe BAVSAHUSA COAEHOCTM Ha pa3AMYHbIe acIIeKThI
MeTabO0AM3Ma pacTeHMI1 U CTpaTerny ero TOAPaHTHOCTH Y PacTeHMIA.

KaroueBble caoBa: coaeBoit crpecc, pacreHus Salicornia m Sarcocornia, acCUMUAALIUSL CepPBI,
HaKOIL1€eHIe IIPOANHa, aKTUBHEIe (POpMBEI Kucaoposa (ADPK), razodpurHble pacTeHNsI.
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