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Spectral Characteristics of Spring Wheat Pests Using Hyperspectral Data: 
Diagnostics and Adaptation Features of Colouring

R.М. Ualiyeva*1 , А.V. Osipova1 , М.М. Kaverina1 , А.А. Faurat1 , S.B. Zhangazin2  

Abstract. Using hyperspectral imaging, the spectral characteristics of six pest 
species (Chorosoma schillingii, Loxostege sticticalis, Tettigonia viridissima, 
Chaetocnema aridula, Calliptamus italicus, and Laodelphax striatella) associated 
with spring wheat in northeastern Kazakhstan were investigated for the first 
time, complementing the few existing studies on this topic. Spectral analysis 
revealed how these insects reflect, transmit, and absorb light, providing 
insights for the future application of such data in pest recognition tasks 
under field conditions. The analysed species exhibited spectral responses 
within the 500-780 nm range. The analysed species exhibited pronounced 
spectral responses in the 500-780 nm range, corresponding both to peak 
reflectance values and the spectral window suitable for diagnostic purposes. 
A high reflectance coefficient was characteristic of light-coloured and smooth 
body surfaces, while darker, uneven, and rougher regions tended to scatter 
light, thereby reducing overall reflectance. Among the studied specimens, 
Chorosoma schillingii showed the highest reflectance due to the combination 
of a smooth body structure and light pigmentation, which also contributed 
to strong reflectance in the near-infrared region. The lowest reflectance 
coefficient was recorded in Chaetocnema aridula, explained by the absorption 
of light by dark pigments. Despite the generally light-coloured exoskeletons of 
most other species, their reflectance coefficient remained low due to the matte 
texture of the cuticle. Insect colouration not only aids in camouflage against 
vegetation but also serves as an adaptation to environmental conditions. 
Light pigmentation contributes to solar reflectance and prevents overheating, 
while darker colouration may offer protection against ultraviolet radiation. 
The variation in colouration across different body parts reflects functional 
adaptations to specific ecological conditions.
Keywords: hyperspectral imaging, spectral characteristics, entomofauna, 
wheat agrocenosis, pests
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Introduction

The identification of insect pests plays a key role in ensuring food security, while modern 
computer vision technologies contribute to accelerating data processing and automating crop 
inspection for the presence of pests. This opens up new opportunities for the development and 
implementation of monitoring systems for agricultural lands. In this context, research into the 
spectral characteristics of pests is essential for training artificial intelligence models capable of 
automatically detecting and identifying pests in the field [1,2].

Imaging systems have already been applied for the analysis of cuticle structures and 
phenotypic changes in Sitophilus oryzae, classification of Anastrepha fraterculus, Anastrepha 
obliqua, Anastrepha sororcula Zucchi, Drosophila melanogaster, Drosophila simulans, Heliothis 
virescens, Helicoverpa zea, detection of Tetramorium caespitum, Tetramorium impurum, and 
Trichogramma spp., as well as the identification of Cryptolestes ferrugineus infestation within 
wheat kernels [3,4]. Hyperspectral imaging has been studied for detecting Tetranychus 
urticae and Hemiptera Pseudococcidae in cotton, describing the integration of alpha taxonomy, 
mitochondrial DNA, and hyperspectral reflectance profiling of Cicadellidae, identifying the 
pest Halyomorpha halys, and taxonomic classification of genera within Orthoptera [5-9]. The 
technology also enables the differentiation of morphologically similar cricket species and the 
study of insect structural features [10,11].

Hyperspectral imaging represents a rapid and non-destructive method for differentiating 
infested plants by pest type, as well as a tool for insect classification. However, the broader 
application of hyperspectral imaging in agriculture for pest identification and assessment 
of harmfulness requires the expansion of spectral databases of entomofauna. For precise 
identification and classification, it is essential to analyse insect spectra that reflect their unique 
optical properties - specifically, the reflection or absorption of light within certain wavelength 
ranges. This approach allows for the discrimination of even morphologically similar species.

Thus, this study aims to investigate the spectral characteristics of spring wheat pests in 
northeastern Kazakhstan using hyperspectral imaging. This research is among the few of its kind 
and the first to provide a detailed examination of the spectral profiles of such pests as Chorosoma 
schillingii, Loxostege sticticalis, Tettigonia viridissima, Chaetocnema aridula, Calliptamus italicus, 
and Laodelphax striatella. The obtained data will serve as a foundation for further classification 
and recognition of these pests through advanced machine learning technologies.

Materials and research methods

The collection of spring wheat pests was carried out during the crop’s vegetation period 
in 2024 in the main grain-producing areas of Pavlodar Region (northeastern Kazakhstan), 
specifically in the Zhelezin and Terenkol districts. Pest accounting was conducted using 
quantitative methods. The target species for this study were Chorosoma schillingii, Loxostege 
sticticalis, Tettigonia viridissima, Chaetocnema aridula, Calliptamus italicus, and Laodelphax 
striatella (Figure 1). External appearance of the six pest species selected for analysis; scale bar 
– 5 mm; all images have a resolution of 300 dpi. The research was conducted at the Laboratory 
of Biological Research, Toraighyrov University, NPJSC (Pavlodar, Kazakhstan). 
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Figure 1. Objects of study (a – Chaetocnema aridula, b – Tettigonia viridissima, 
c – Laodelphax striatella, d – Loxostege sticticalis, e – Calliptamus italicus, f – Chorosoma schillingi)

Hyperspectral imaging of the selected specimens was performed using a FigSpec FS-13 VNIR 
scanning hyperspectral camera, operating within the 400-1000 nm range, capable of capturing 
over 250 spectral channels with a spectral resolution of 2.5 nm [12]. Preliminary visual 
quality control of the acquired hyperspectral images was carried out in the Breeze software 
environment, with further data processing implemented using the IDL programming language. 
A PCA (Principal Component Analysis) model was constructed using machine learning methods 
[13,14] in the Pixel Explore module, based on all image pixels. Five principal components were 
used for the analysis, collectively explaining 94.6% of the total variance in the spectral data (PC1 
– 58.2%, PC2 – 21.4%, PC3 – 8.7%, PC4 – 4.1%, PC5 – 2.2%). These values allow for a reliable 
interpretation of the observed differences between species in the PCA plots (Figures 2 and 3). 
The dataset included spectral plots (Raw Spectrum), variance scatter plots, and a hyperspectral 
image based on maximal variance. For each insect species, between 15 and 25 individuals were 
selected (Anisoplia austriaca – 20, Anisoplia agricola – 18, Phorbia fumigata – 15, Trigonotylus 
ruficornis – 25, Phyllotreta vittula – 22, Haplothrips tritici – 20). The collection was carried out 
in the morning and early afternoon hours (from 8:00 AM to 1:00 PM) under predominantly 
clear weather conditions. Lighting conditions during hyperspectral imaging were carefully 
recorded: 82% of the samples were captured under direct sunlight, and 18% under diffuse light 
on overcast days.

have a resolution of 300 dpi. The research was conducted at the Laboratory of 91 
Biological Research, Toraighyrov University, NPJSC (Pavlodar, Kazakhstan).  92 
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For statistical analysis, modeling, and data visualisation, SigmaPlot 15.0 was used with Python 
programming language support, integrated with Microsoft Excel for streamlined data import 
and analysis. Spectral data were statistically processed using analysis of variance (ANOVA) and 
descriptive statistics methods.

Before conducting the ANOVA, the main assumptions were tested: normality was assessed 
using the Shapiro-Wilk test (p > 0.05 for all groups), and homogeneity of variances was evaluated 
using Levene’s test (p > 0.05) [15,16]. All obtained p-values are presented in Table 2.

Minimum and Maximum Reflectance are calculated using the formulas:

Rmin=min (R1,R2,…,Rn)
Rmax=max (R1,R2,…,Rn)

where Rmin and Rmax are the minimum and maximum reflectance values within the 
sample; R1,R2,…,Rn are the individual reflectance measurements; and n is the total number of 
measurements.

Mean Reflectance represents the average intensity of reflected light within the analysed 
spectral range and characterises the general reflectance level of the object. It is calculated as:

Where Rᵢ is the reflectance value for the i-th measurement, and n is the total number of 
measurements [17, 18].

Standard Deviation quantitatively indicates the dispersion of reflectance values from the 
mean, allowing for the assessment of how statistically distinguishable the spectra are. It is 
calculated using the formula. It is computed as: 

where μ is the mean reflectance, Rᵢ is the reflectance value of the i-th measurement, and n is 
the total number of measurements.

Before each imaging session, the camera was calibrated using a white reference standard 
(Spectralon 99%) and a dark frame (with the lens covered). The distance between the lens of the 
Figspec FS-13 hyperspectral camera and the specimen was 20 cm. Illumination was provided 
by natural daylight.

Coefficient of Variation (CV) expresses the degree of variability and enables the evaluation 
of how variable the insect spectra are relative to their mean value. It is calculated using the 
formula: 

where σ is the standard deviation and μ is the mean reflectance.
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Rate of Change (RoC) is a dynamic parameter describing the rate of reflectance coefficient 
variation over time. It helps assess the temporal dynamics of spectral properties in a single 
subject. The formula is:

where R1 and  R2 are reflectance values at time points T₁ and T₂, respectively.
Delta Reflectance (∆R) indicates the difference between maximum and minimum reflectance 

values within a specific spectral range or between two measurement conditions: 

∆R=Rmax – Rmin

where Rmin and Rmax are the minimum and maximum reflectance values within the sample.
Spectral Bandwidth refers to the width of the spectral range in which significant changes in 

reflectance occur. It helps to identify regions where the object exhibits distinct optical properties, 
such as maximum absorption or reflection. The overlap or separation of spectral bands across 
different species or conditions can be used to detect statistically significant differences. It is 
calculated using the formula:

SB=λmax – λmin,

where λmin is the minimum wavelength, and λmax  is the maximum wavelength.
Spectral Skewness describes the asymmetry in the distribution of reflectance and absorption 

values. It is calculated using the formula:
 

where σ is the standard deviation, μ is the mean reflectance, Rᵢ is the reflectance value for the 
i-th measurement, and n is the total number of measurements.
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Results

The images present the spectral characteristics of insects obtained via hyperspectral imaging 
[19-22]. Each insect specimen and its corresponding spectral curve are assigned matching 
numbers; for instance, the first red line in the Raw Spectrum graph corresponds to specimen 
number one in the hyperspectral image [23]. Chaetocnema aridula is a small, oval-shaped insect 
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measuring 2-3 mm in length (Figure 1). Its body exhibits a shiny surface with a greenish-bronze 
sheen. The elytra, pronotum, and legs are uniformly black. 

According to the Raw Spectrum graph, the insect demonstrates low reflectance due to its 
dark colouration, which absorbs a significant portion of incident light (Figure 2). A reflection 
peak is observed in the 500-750 nm range, while a decline in intensity beyond 750 nm indicates 
reduced chitin reflectivity in the near-infrared region, which is typical of dark-coloured surfaces. 
The highest reflectance is recorded in the first sample, attributed to the smoother surface 
texture of the elytra.

 

Figure 2. Spectral characteristics of Chaetocnema aridula

In contrast, the lowest reflectance is observed in the fourth sample, which was positioned 
with its abdomen facing upward, thereby reducing the amount of reflected light. The Variance 
Scatter Plot for Chaetocnema aridula displays low data density, which can be explained by 
the insect’s small size and its morphological and spectral characteristics. Due to the limited 
number of pixels captured during hyperspectral imaging, less spectral information is collected. 
Moreover, the presence of pigments that absorb light within specific wavelength ranges reduces 
the overall spectral variability, resulting in a sparser distribution in the scatter cloud.

The imago of Tettigonia viridissima reaches a length of 20-25 mm, with colouration ranging 
from green and yellow to pinkish-yellow (Figure 1). The head features a well-defined, laterally 
compressed vertex and is equipped with antennae. The male’s forewings possess a stridulatory 
organ, consisting of a mirror, a transparent resonating membrane, and a stridulatory section. 
In the Raw Spectrum graph, the highest reflectance is observed in the first sample, where the 
selected region includes the wings (Figure 3).
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Figure 3. Spectral characteristics of Tettigonia viridissima

The wing membrane reflects more light than the insect’s chitinous exoskeleton. The lowest 
reflectance is recorded in the second sample, where the wings are not visible in the image. The 
size and position of the wings enhance the overall spectral intensity due to light scattering. The 
spectral peak is observed in the 500-750 nm range, while the intensity decrease beyond 750 nm 
indicates a reduction in chitin reflectance in the near-infrared spectrum. In the Variance Scatter 
Plot, the high point density observed in the scatter cloud can be attributed to the uniformity of 
the cuticular structure and the larger body size of Tettigonia viridissima. With a greater surface 
area, more spectral data is collected from various regions, leading to an increase in point 
density. The spectral characteristics remain relatively uniform due to the consistency in surface 
structure across the insect’s larger body.

Chorosoma schillingi measures 11-15 mm in length and has a slender, yellow-green body 
(Figure 1). The fifth sample exhibits the highest intensity due to its lighter colouration and less 
dense chitinous exoskeleton, which allows more light to be reflected (Figure 4). In contrast, the 
first sample shows the lowest intensity because of its rougher body surface, which causes more 
light scattering. The spectral graph shows an intensity peak in the 500-780 nm range, indicating 
limited reflection in the near-infrared spectrum. In the Variance Scatter plot, the moderate 
point density is associated with the insect's narrow body. A narrower body provides a smaller 
surface area, which restricts the amount of spectral data collected. This results in an average 
point density, as spectral variability is less pronounced due to the smaller volume of data. 
Additionally, the insect's narrow shape may contribute to more localised spectral differences, 
such as segmentation or structural variations, which increase data spread and reduce overall 
density.
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Figure 4. Spectral characteristics of Chorosoma schillingi

Loxostege sticticalis has light brown forewings with a dark brown pattern and greyish-brown 
hindwings (Figure 1). It features a head with compound eyes and simple thread-like antennae, 
measuring 17-19 mm in length. The spectral intensity peak falls within the 500-780 nm range 
(Figure 5). The first sample has the lowest reflection coefficient due to its darker, brownish 
colouration. In contrast, the second sample, which has a lighter body, exhibits the highest reflection 
coefficient. According to the Raw Spectrum graph (Figure 5), the head reflects significantly less 
light than the wings. The wings exhibit a higher reflection coefficient than other body parts due 
to their structure, which allows them to reflect more incident light rather than absorb it. Wing 
venation and fine scales, characteristic of Lepidoptera, contribute to this effect. Scales on the 
wings can be pigment-based, determining colouration, or structural, producing optical effects 
such as iridescence or sheen through light interference, which enhances reflectivity. Some 
scales possess microscopic structures that interact with light, causing reflection and refraction, 
thereby significantly increasing wing reflectivity even in the absence of bright pigments. The 
wing surface, covered in scales, is relatively smooth at the microscopic level, further enhancing 
light reflection. The light-coloured wings of Loxostege sticticalis enhance reflectivity despite the 
presence of brown pigments. The thin and transparent wing membrane also contributes to a 
higher reflection coefficient than other body parts. High reflectivity may be an adaptive trait, 
aiding in temperature regulation by reflecting sunlight and providing camouflage by blending 
with bright surroundings, such as sunlit grass.

 

Additionally, the insect's narrow shape may contribute to more localised spectral 265 
differences, such as segmentation or structural variations, which increase data spread 266 
and reduce overall density. 267 

 268 

 269 
 270 
Figure 4. Spectral characteristics of Chorosoma schillingi 271 
 272 
Loxostege sticticalis has light brown forewings with a dark brown pattern and 273 

greyish-brown hindwings (Figure 1). It features a head with compound eyes and simple 274 
thread-like antennae, measuring 17-19 mm in length. The spectral intensity peak falls 275 
within the 500-780 nm range (Figure 5). The first sample has the lowest reflection 276 
coefficient due to its darker, brownish colouration. In contrast, the second sample, 277 
which has a lighter body, exhibits the highest reflection coefficient. According to the 278 
Raw Spectrum graph (Figure 5), the head reflects significantly less light than the wings. 279 
The wings exhibit a higher reflection coefficient than other body parts due to their 280 
structure, which allows them to reflect more incident light rather than absorb it. Wing 281 
venation and fine scales, characteristic of Lepidoptera, contribute to this effect. Scales 282 
on the wings can be pigment-based, determining colouration, or structural, producing 283 
optical effects such as iridescence or sheen through light interference, which enhances 284 
reflectivity. Some scales possess microscopic structures that interact with light, causing 285 
reflection and refraction, thereby significantly increasing wing reflectivity even in the 286 
absence of bright pigments. The wing surface, covered in scales, is relatively smooth 287 
at the microscopic level, further enhancing light reflection. The light-coloured wings 288 
of Loxostege sticticalis enhance reflectivity despite the presence of brown pigments. 289 
The thin and transparent wing membrane also contributes to a higher reflection 290 
coefficient than other body parts. High reflectivity may be an adaptive trait, aiding in 291 
temperature regulation by reflecting sunlight and providing camouflage by blending 292 
with bright surroundings, such as sunlit grass. 293 

 294 



Л.Н. Гумилев атындағы Еуразия ұлттық университетінің ХАБАРШЫСЫ. Биологиялық ғылымдар сериясы
BULLETIN of L.N. Gumilyov Eurasian National University. Bioscience series

ВЕСТНИК Евразийского национального университета имени Л.Н. Гумилева. Серия биологические науки

156 №2(151)/ 
2025

R.М. Ualiyeva, А.V. Osipova, М.М. Kaverina, А.А. Faurat, S.B. Zhangazin 

Figure 5. Spectral characteristics of Loxostege sticticalis

Calliptamus italicus ranges in length from 20 to 25 mm and is predominantly brown and 
yellow-brown in colour (Figure 1). The spectral graph shows the highest reflection coefficients 
in the third and fourth samples, while the first, second, and fifth samples have the lowest 
(Figure 6). The third and fourth samples have visibly yellow abdomens, whereas the others are 
positioned at different angles, making them appear darker. The intensity peak occurs within the 
550-750 nm range, decreasing in the near-infrared spectrum. 

 

Figure 6. Spectral characteristics of Calliptamus italicus
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The Raw Spectrum graph displays spectra from the head and limbs. The head is 311 

darker than the abdomen and limbs due to the presence of pigments such as melanin in 312 
the cuticle. Dark pigments absorb more light, reducing reflectivity. This darker 313 
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The Raw Spectrum graph displays spectra from the head and limbs. The head is darker 
than the abdomen and limbs due to the presence of pigments such as melanin in the cuticle. 
Dark pigments absorb more light, reducing reflectivity. This darker colouration may provide 
camouflage and protection against ultraviolet radiation, both crucial for survival. Additionally, 
lower reflectivity could result from the denser chitin composition of the head. In contrast, the 
limbs are lighter in colour, containing fewer pigments, which results in higher reflectivity. This 
lighter colouration helps reflect sunlight, preventing overheating during active movement.

Imago Laodelphax striatella measures 4 mm in length (Figure 1). Males have yellow bodies, 
while females are black-brown with black-striped patterns. Their transparent wings feature 
a brownish smear on the inner side in females or a partially smoky appearance in males. Due 
to this sexual dimorphism, the spectra of males and females may differ based on pigment 
composition. The first sample has the lowest reflection coefficient, while the second and third 
samples have the highest (Figure 7). Samples positioned with their abdomens facing upward 
may show lower intensity, whereas those with wings facing upward exhibit higher reflectivity 
within the same sex. The spectral intensity peak occurs within the 550-750 nm range. In the 
Variance Scatter plot, the low point density is attributed to the insect’s small size, which limits 
the number of spectral data points captured.

 

Figure 7. Spectral characteristics of Laodelphax striatella

The generalised spectral characteristic data are presented in Table 1. The statistical analysis 
of the data allowed for the identification of key patterns in the spectral characteristics (Table 
2) of the insects, the assessment of their variability and stability, and the clear and informative 
visual presentation of the results.

The highest maximum reflectance is observed in Chorosoma schillingi due to its light pigment 
and in Loxostege sticticalis due to the reflective ability of the wing membrane, while the lowest 
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is seen in Chaetocnema aridula due to its dark pigment. Mean Reflectance simplifies complex 
spectral data into a single numerical value, making it easier to compare between individuals 
or species. Chaetocnema aridula has the lowest mean value, which corresponds to the lowest 
reflection intensity among all the samples. Laodelphax striatella shows the highest mean value 
due to the presence of light pigments and nearly uniform reflectivity across the samples of the 
species.

Table 1
Spectral characteristics of insects 

№ Species Body part Wave lenght (nm) Reflection 
coefficient (%)

1 Chaetocnema aridula Body 500-750 10-20
2 Tettigonia viridissima Body 500-750 20-25
3 Chorosoma schillingi Body 500-780 35-45
4 Loxostege sticticalis Body 500-780 20-40

Head 500-750 15
Wings 500-780 30-38

5 Calliptamus italicus Body 550-750 22,5-35
Head 500-750 20-25
Legs 500-750 35-40

6 Laodelphax striatella Body 550-750 22,5-37,5

The Standard Deviation values among the presented samples are low, confirming the 
reproducibility of measurements within a species. For instance, in Chaetocnema aridula, σ = 
2.89% for reflection at 750 nm, meaning most values lie within ±2.89% of the mean. High values 
suggest measurement errors or biological variability, with a greater diversity of characteristics 
within a species. For samples with high values (e.g., 15%), additional tests such as the t-test 
should be conducted. This indicator also allows for the assessment of variability within a 
species: if the reflection σ increases sharply over the course of a year, it may indicate adaptation 
to new environmental conditions.

Tettigonia viridissima and Chorosoma schillingi have low Coefficient of Variation values, 
indicating high reproducibility of data. Chaetocnema aridula, Loxostege sticticalis, and 
Laodelphax striatella exhibit moderate variability, linked to biological heterogeneity among 
the samples, such as age differences and cuticle condition. Stable species demonstrate low RoC 
values, indicating the stability of their optical properties. Loxostege sticticalis has a primary RoC 
= 15, a relatively high rate of change. Combined with a high ΔR (20%), this suggests significant 
variability in reflectance, possibly due to age differences within the sample and varying cuticle 
conditions (e.g., moulting or damage). Calliptamus italicus shows a sharp increase in RoC = 15 in 
the head region, where the colouration significantly differs from the rest of the body.

Stable species also exhibit lower ΔR under changing conditions. The ΔR value of 5% in 
Tettigonia viridissima indicates the species' stability. Values of 10-20% exceed the natural 
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fluctuation typical of stable populations. In a small sample, this is not significant, as random 
fluctuations distort the result. Elevated ΔR and σ values in some species suggest the need to 
account for external factors.

Table 2
Statistical analysis of spectral reflection coefficients

№

1 Chaetocnema 
aridula

Body 10 20 15 2,89 19,25 15 – 10 0,15 0,30

2 Tettigonia 
viridissima

Body 20 25 18,4 1,44 7,84 18,4 – 5 0,55 0,70

3 Chorosoma 
schillingi 

Body 35 45 32,4 2,89 8,91 32,4 – 10 0,08 0,60

4 Loxostege 
sticticalis

Body 20 40 30 5,77 19,25 30 15 20 0,03 0,02
Head 15 15 15 0 0 15 19 0 1,00 –
Wings 30 38 34 2,31 6,79 34 4 8 0,40 0,80

5 Calliptamus 
italicus

Body 22,5 35 26,5 3,61 13,62 26,5 4 12,5 0,07 0,25
Head 20 25 22,5 1,44 6,42 22,5 15 5 0,65 0,90
Legs 35 40 37,5 1,44 3,85 37,5 11 5 0,75 0,85

6 Laodelphax 
striatella

Body 22,5 37,5 33 4,33 13,12 33 – 15 0,04 0,10

Overall, all species exhibit nearly identical Spectral Bandwidth values due to the similar 
organisation of the chitinous exoskeletons, as they belong to the same class. Among the samples, 
a slight positive skew in Spectral Skewness is observed in Chorosoma schillingi, Calliptamus 
italicus, and Laodelphax striatella, which is attributed to the presence of pigments that are rare 
in the sample but intense. No asymmetry is observed in the remaining species (Table 3). A 
positive value of Spectral Skewness indicates a shift of the reflectance spectrum towards the 
long-wavelength region, which may suggest the predominance of dark pigments. Conversely, 
negative skewness indicates stronger reflectance in the short-wavelength range, implying the 
presence of pigments that more effectively reflect blue and green light.
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Table 3
Statistical analysis of the spectrum range

№ Species Body parts Min Max Spectral 
Bandwidth

Spectral 
Skewness

1 Chaetocnema aridula Body 500 750 250 0
2 Tettigonia viridissima Body 500 750 250 0
3 Chorosoma schillingi Body 500 750 250 0,390
4 Loxostege sticticalis Body 500 780 280 0

Head 500 750 250 –
Wings 500 780 280 0,312

5 Calliptamus italicus Body 550 750 200 0,408
Head 500 750 250 0
Legs 500 750 250 -0,204

6 Laodelphax striatella Body 550 750 200 0,618

The statistical data processing results were visualised using SigmaPlot 15.0. The data in 
Figure 8 are presented in a colour gradient, covering the wavelength range indicators and 
spectral skewness. Darker areas (dark blue) represent negative skewness values, indicating 
a leftward shift in the distribution. The gradual transition to yellow-orange colours reflects 
positive skewness values, suggesting a rightward shift in the distribution. This allows for the 
visualisation of differences in spectral shape or data distribution, where brightness and colour 
gradation help easily identify areas with varying degrees of asymmetry.

 
Note: x-axis – maximum wavelength value; y-axis – minimum wavelength value; z-axis – spectral 

skewness
Figure 8. Wavelength indicators (nm) and spectral skewness

The data in Figure 9, presented in a colour gradient, reflect the values of the reflection 
coefficient, rate, and delta of reflection. The dark blue areas indicate higher reflectivity of 
the studied objects, as well as a range with lower values of rate and delta of reflection. This 
may suggest stable or slow reflection processes in the studied samples. The orange-red areas 
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demonstrate lower values of the reflection coefficient, which are associated with higher values 
of the rate and delta of reflection, respectively.

 
Note: x-axis – maximum reflection coefficient value; y-axis – minimum reflection coefficient value; 

z-axis – rate and delta of reflection

Figure 9. Reflection coefficient, rate, and delta indicators 

These areas may indicate changes in the exoskeleton structure or the chemical composition 
of the insect body or its parts, leading to rapid variations in the reflection characteristics, which 
are displayed in the colour gradient of hyperspectral images. The colour gradient serves as a 
tool for quickly identifying areas with unique characteristics. 

Discussion

This work represents the first study of the phenotypic traits, where spectral characteristics 
of pest entomofauna in wheat agrocenoses were described using hyperspectral imaging and 
computer vision technologies. The imaging demonstrated the high sensitivity of the method to 
differences in the reflectivity of the exoskeleton. The variation in intensity reflects the variability 
between different body parts and morphological features of the individuals [24-26], such as 
pigmentation, density, chitin structure, and age. Despite the differences of each individual 
sample, the spectral curves exhibit similar intensity and wavelength for each species, which 
forms the basis for their identification [27,28]. The obtained spectral signatures provide a solid 
foundation for developing machine learning algorithms that enable automatic classification of 
pests based on their unique reflectance spectra [29,30]. Future work will focus on building and 
validating models such as PLS-DA, SVM, and neural networks using the presented set of spectral 
profiles to create effective pest monitoring systems [31,32].

The study results show that reflectivity decreases with the presence of a larger amount of 
dark pigment in the cuticle. Higher reflectivity is observed in insects with lighter body coverings, 
such as Laodelphax striatella with yellow pigment and Chorosoma schillingi with green pigment. 
This supports previous research where it was found that insects with white, red, orange, and 
yellow colouration exhibit high reflectivity, a property also observed in some green species [12].

The combination of pigment composition, surface smoothness of the chitin, and cuticle 
density is also crucial. Insects with lighter colouration and a matte or rough body surface will 
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exhibit lower reflectivity. Among all the studied insects, Loxostege sticticalis spans the near-
infrared spectrum due to the effective reflection of light from its smooth, light-coloured wing 
surface at the micro level. The wings are covered with microscopic scales that act as a diffraction 
grating, causing light interference. This creates iridescence. Keratin and chitin in the wings form 
translucent layers that reflect light. Bright reflection may be an adaptation: it aids in camouflage 
among foliage, attracts mates, and prevents overheating of the wings. The bodies of insects 
are typically covered with a matte cuticle with roughness that scatters light, while their legs 
and antennae have setae that absorb light, leading to the lowest reflectivity in these parts of 
the body. Additionally, the heads of insects generally contain more dark pigments than other 
body parts, which may serve as protection against ultraviolet radiation, as seen in Calliptamus 
italicus. Overall, insects with a predominance of melanin colouration exhibit the highest peak in 
the visible range (500-750 nm), with little or no reflection in the near-infrared spectrum. The 
combination of small size, dark colouration, and matte covering results in the lowest reflectivity 
coefficient, as observed in Chaetocnema aridula.

Based on the statistical analysis, the most stable species is Tettigonia viridissima, with the 
least variation observed within the sample. The most significant intra-species differences are 
found in Loxostege sticticalis, due to both the small number of objects in the sample and the 
greater diversity of colouration and wing structure, which increases variability. The study of 
spectral characteristics opens up opportunities for the application of technology [33,34] in 
precise, rapid, and non-invasive research on the morphology, taxonomy of insects, and pest 
detection in fields.

Conclusion

In this study, the spectral characteristics of the wheat pests Chorosoma schillingii, Loxostege 
sticticalis, Tettigonia viridissima, Chaetocnema aridula, Calliptamus italicus, and Laodelphax 
striatella were described for the first time. The obtained data provide insights into how insects 
interact with light, reflecting, transmitting, and absorbing it, opening new opportunities for 
their classification and efficient application in agricultural practices.

The spectral characteristics of insects not only help create databases for their identification 
but also reveal the adaptive features of their colouration in response to light exposure. Light 
colouration can help prevent overheating by reflecting sunlight, while dark colouration protects 
against ultraviolet radiation. The diversity of colours on different parts of the insect body is a 
result of such ecological adaptations.  

The highest reflectance was demonstrated by the Chorosoma schillingii sample, which 
is related to its smooth structure and light colouration, while the lowest was observed in 
Chaetocnema aridula due to light absorption by its dark pigment. The other studied species, 
despite their light exoskeletons, have low reflectance due to the matte texture of their covers.  

Hyperspectral imaging, which covers a wider range of the electromagnetic spectrum, allows 
the consideration of nuances that are not visible to the naked eye. The structure of the insect’s 
chitinous cover, its roughness, and microstructures also affect reflectance. The practical application 
of hyperspectral imaging requires taking into account factors such as the time of day and lighting 
conditions during the imaging process in order to obtain accurate and comparable data. 
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Thus, the results of the study expand the possibilities for applying hyperspectral imaging 
to the study of insect exoskeletons, which, in turn, opens new horizons for using these data in 
agriculture and entomology.
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Гиперспектралды деректерді пайдалану арқылы жаздық бидай зиянкестерінің спектрлік 
сипаттамалары: диагностикасы және түсінің бейімделу ерекшеліктері

Р.М. Уалиева*1, А.В. Осипова1, М.М. Каверина1, А.А. Фаурат11, С.Б. Жангазин2

1Торайғыров университеті, Павлодар, Қазақстан
2Л.Н. Гумилев атындағы Еуразия ұлттық университеті, Астана, Қазақстан

Аңдатпа. Гиперспектралды түсіруді пайдалана отырып, солтүстік-шығыс Қазақстанда 
жаздық бидаймен байланысты алты зиянкес түрінің (Chorosoma schillingii, Loxostege sticticalis, 
Tettigonia viridissima, Chaetocnema aridula, Calliptamus italicus және Laodelphax striatella) спектрлік 
сипаттамалары алғаш рет зерттелді. Бұл зерттеу осы тақырып бойынша бар болғаны 
бірнеше ғылыми еңбектерді толықтырады. Спектрлерді талдау жәндіктердің жарықты қалай 
шағылыстыратынын, беретінін және сіңіретінін көрсетті, бұл осы деректерді егістіктердегі 
зиянкестерді айырып тану тапсырмаларында одан әрі қолдануға мүмкіндік береді. Зерттелген 
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түрлердің спектрі 500-780 нм аралығында болады. Жоғары шағылысу жәндіктер денесінің жеңіл 
және тегіс аймақтарына тән, ал қараңғы, біркелкі емес және кедір-бұдырлы бөліктер жарықты 
шашыратып, жалпы шағылыстыруды төмендетеді. Зерттелген үлгілердің ішінде ең жоғары 
шағылысу қабілеті Chorosoma schillingii түрінің үлгісінде тегіс құрылым мен жабындардың 
ашық түсінің үйлесуіне байланысты байқалады. Бұл сондай-ақ жақын инфрақызыл спектріндегі 
қарқынды шағылысумен байланысты. Ең төменгі шағылысу коэффициенті Chaetocnema aridula 
түрінде тіркелген, бұл оның қара пигментімен жарықты сіңірумен түсіндіріледі. Көптеген 
басқа түрлердің ашық түсті экзоскелетіне қарамастан, олардың шағылысу коэффициенті 
жабындардың күңгірт құрылымына байланысты төмен болып қалады. Жәндіктердің түсі тек 
өсімдік фонында жасыруға көмектесіп қана қоймай, сонымен қатар қоршаған орта жағдайларына 
бейімделу болуы мүмкін. Ашық түстер күн сәулесін шағылыстыруға көмектесіп, артық қызып 
кетуден қорғайды, ал қара түстер ультрафиолет сәулесінен қорғаныс рөлін атқаруы мүмкін. 
Жәндіктердің дене бөліктерінің әр түрлі түстері болуы мүмкін, бұл экологиялық жағдайларға 
функционалды бейімделумен байланысты.
Түйін сөздер: гиперспектралды визуализация, спектрлік сипаттамалар, энтомофауна, бидай 
агроценозы, зиянкестер

Спектральные характеристики вредителей яровой пшеницы с использованием 
гиперспектральных данных: диагностика и адаптационные особенности окраса

Р.М. Уалиева*1, А.В. Осипова1, М.М. Каверина1, А.А. Фаурат1, С.Б. Жангазин2

1Торайгыров университет, Павлодар, Казахстан
2Евразийский национальный университет им. Л.Н. Гумилева, Астана, Казахстан

Аннотация. С использованием гиперспектральной съёмки впервые были исследованы 
спектральные характеристики шести видов вредителей (Chorosoma schillingii, Loxostege sticticalis, 
Tettigonia viridissima, Chaetocnema aridula, Calliptamus italicus и Laodelphax striatella), связанных 
с яровой пшеницей в северо-восточном Казахстане, что дополняет немногочисленные 
существующие исследования по данной теме. Анализ спектров показал, как насекомые отражают, 
передают и поглощают свет, что открывает возможности для дальнейшего применения этих 
данных в задачах распознавания вредителей на полях. Исследованные виды имеют диапазон 
спектра в пределах 500-780 нм. Высокий коэффициент отражения характерен для светлых 
и гладких участков тела насекомых, в то время как темные, неровные и шероховатые части 
рассеивают свет, снижая общую отражательную способность. Среди исследованных образцов 
наиболее высокая отражательная способность наблюдается у экземпляра вида Chorosoma 
schillingii благодаря сочетанию гладкой структуры и светлого окраса покровов. Это также связано 
с интенсивным отражением в ближнем инфракрасном спектре. Наименьший коэффициент 
отражения зафиксирован у Chaetocnema aridula, что объясняется поглощением света темным 
пигментом. Несмотря на светлый экзоскелет у большинства других видов, их коэффициент 
отражения остается низким из-за матовой текстуры покровов. Цветовое окрашивание насекомых 
не только способствует маскировке на растительном фоне, но также может быть адаптацией 
к условиям окружающей среды. Светлая окраска способствует отражению солнечного 



Л.Н. Гумилев атындағы Еуразия ұлттық университетінің ХАБАРШЫСЫ. Биологиялық ғылымдар сериясы
BULLETIN of L.N. Gumilyov Eurasian National University. Bioscience series
ВЕСТНИК Евразийского национального университета имени Л.Н. Гумилева. Серия биологические науки

167№2(151)/ 
2025

Spectral Characteristics of Spring Wheat Pests Using Hyperspectral Data: Diagnostics and Adaptation 
Features of Colouring

света и предотвращает перегрев, в то время как темная окраска может служить защитой от 
ультрафиолетового излучения. Разные части тела насекомых могут иметь различные окраски, 
что связано с функциональными адаптациями к экологическим условиям.
Ключевые слова: гиперспектральная визуализация, спектральные характеристики, энтомо-
фауна, агроценоз пшеницы, вредители
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