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Abstract. Using hyperspectral imaging, the spectral characteristics of six pest
species (Chorosoma schillingii, Loxostege sticticalis, Tettigonia viridissima,
Chaetocnema aridula, Calliptamus italicus, and Laodelphax striatella) associated
with spring wheat in northeastern Kazakhstan were investigated for the first
time, complementing the few existing studies on this topic. Spectral analysis
revealed how these insects reflect, transmit, and absorb light, providing
insights for the future application of such data in pest recognition tasks
under field conditions. The analysed species exhibited spectral responses
within the 500-780 nm range. The analysed species exhibited pronounced
spectral responses in the 500-780 nm range, corresponding both to peak
reflectance values and the spectral window suitable for diagnostic purposes.
A high reflectance coefficient was characteristic of light-coloured and smooth
body surfaces, while darker, uneven, and rougher regions tended to scatter
light, thereby reducing overall reflectance. Among the studied specimens,
Chorosoma schillingii showed the highest reflectance due to the combination
of a smooth body structure and light pigmentation, which also contributed
to strong reflectance in the near-infrared region. The lowest reflectance
coefficient was recorded in Chaetocnema aridula, explained by the absorption
of light by dark pigments. Despite the generally light-coloured exoskeletons of
most other species, their reflectance coefficient remained low due to the matte
texture of the cuticle. Insect colouration not only aids in camouflage against
vegetation but also serves as an adaptation to environmental conditions.
Light pigmentation contributes to solar reflectance and prevents overheating,
while darker colouration may offer protection against ultraviolet radiation.
The variation in colouration across different body parts reflects functional
adaptations to specific ecological conditions.

Keywords: hyperspectral imaging, spectral characteristics, entomofauna,
wheat agrocenosis, pests

Received: 10.04.2025. Accepted: 24.06.2025. Available online: 04.07.2025.

148


https://orcid.org/0000-0003-3551-5007
https://orcid.org/0000-0002-3947-5252
https://orcid.org/0000-0002-3838-7656
https://orcid.org/0000-0002-9878-8224
https://orcid.org/0000-0002-5813-8331
https://doi.org/10.32523/2616-7034-2025-151-2-148-168

Spectral Characteristics of Spring Wheat Pests Using Hyperspectral Data: Diagnostics and Adaptation
Features of Colouring

Introduction

The identification of insect pests plays a key role in ensuring food security, while modern
computer vision technologies contribute to accelerating data processing and automating crop
inspection for the presence of pests. This opens up new opportunities for the development and
implementation of monitoring systems for agricultural lands. In this context, research into the
spectral characteristics of pests is essential for training artificial intelligence models capable of
automatically detecting and identifying pests in the field [1,2].

Imaging systems have already been applied for the analysis of cuticle structures and
phenotypic changes in Sitophilus oryzae, classification of Anastrepha fraterculus, Anastrepha
obliqua, Anastrepha sororcula Zucchi, Drosophila melanogaster, Drosophila simulans, Heliothis
virescens, Helicoverpa zea, detection of Tetramorium caespitum, Tetramorium impurum, and
Trichogramma spp., as well as the identification of Cryptolestes ferrugineus infestation within
wheat kernels [3,4]. Hyperspectral imaging has been studied for detecting Tetranychus
urticae and Hemiptera Pseudococcidae in cotton, describing the integration of alpha taxonomy,
mitochondrial DNA, and hyperspectral reflectance profiling of Cicadellidae, identifying the
pest Halyomorpha halys, and taxonomic classification of genera within Orthoptera [5-9]. The
technology also enables the differentiation of morphologically similar cricket species and the
study of insect structural features [10,11].

Hyperspectral imaging represents a rapid and non-destructive method for differentiating
infested plants by pest type, as well as a tool for insect classification. However, the broader
application of hyperspectral imaging in agriculture for pest identification and assessment
of harmfulness requires the expansion of spectral databases of entomofauna. For precise
identification and classification, it is essential to analyse insect spectra that reflect their unique
optical properties - specifically, the reflection or absorption of light within certain wavelength
ranges. This approach allows for the discrimination of even morphologically similar species.

Thus, this study aims to investigate the spectral characteristics of spring wheat pests in
northeastern Kazakhstan using hyperspectral imaging. This research is among the few of its kind
and the first to provide a detailed examination of the spectral profiles of such pests as Chorosoma
schillingii, Loxostege sticticalis, Tettigonia viridissima, Chaetocnema aridula, Calliptamus italicus,
and Laodelphax striatella. The obtained data will serve as a foundation for further classification
and recognition of these pests through advanced machine learning technologies.

Materials and research methods

The collection of spring wheat pests was carried out during the crop’s vegetation period
in 2024 in the main grain-producing areas of Pavlodar Region (northeastern Kazakhstan),
specifically in the Zhelezin and Terenkol districts. Pest accounting was conducted using
quantitative methods. The target species for this study were Chorosoma schillingii, Loxostege
sticticalis, Tettigonia viridissima, Chaetocnema aridula, Calliptamus italicus, and Laodelphax
striatella (Figure 1). External appearance of the six pest species selected for analysis; scale bar
- 5 mm; all images have a resolution of 300 dpi. The research was conducted at the Laboratory
of Biological Research, Toraighyrov University, NPJSC (Pavlodar, Kazakhstan).
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Figure 1. Objects of study (a - Chaetocnema aridula, b - Tettigonia viridissima,
¢ - Laodelphax striatella, d - Loxostege sticticalis, e - Calliptamus italicus, f - Chorosoma schillingi)

Hyperspectral imaging of the selected specimens was performed using a FigSpec FS-13 VNIR
scanning hyperspectral camera, operating within the 400-1000 nm range, capable of capturing
over 250 spectral channels with a spectral resolution of 2.5 nm [12]. Preliminary visual
quality control of the acquired hyperspectral images was carried out in the Breeze software
environment, with further data processing implemented using the IDL programming language.
A PCA (Principal Component Analysis) model was constructed using machine learning methods
[13,14] in the Pixel Explore module, based on all image pixels. Five principal components were
used for the analysis, collectively explaining 94.6% of the total variance in the spectral data (PC1
- 58.2%, PC2 - 21.4%, PC3 - 8.7%, PC4 - 4.1%, PC5 - 2.2%). These values allow for a reliable
interpretation of the observed differences between species in the PCA plots (Figures 2 and 3).
The dataset included spectral plots (Raw Spectrum), variance scatter plots, and a hyperspectral
image based on maximal variance. For each insect species, between 15 and 25 individuals were
selected (Anisoplia austriaca - 20, Anisoplia agricola - 18, Phorbia fumigata - 15, Trigonotylus
ruficornis — 25, Phyllotreta vittula - 22, Haplothrips tritici — 20). The collection was carried out
in the morning and early afternoon hours (from 8:00 AM to 1:00 PM) under predominantly
clear weather conditions. Lighting conditions during hyperspectral imaging were carefully
recorded: 82% of the samples were captured under direct sunlight, and 18% under diffuse light
on overcast days.
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For statistical analysis, modeling, and data visualisation, SigmaPlot 15.0 was used with Python
programming language support, integrated with Microsoft Excel for streamlined data import
and analysis. Spectral data were statistically processed using analysis of variance (ANOVA) and
descriptive statistics methods.

Before conducting the ANOVA, the main assumptions were tested: normality was assessed
using the Shapiro-Wilk test (p > 0.05 for all groups), and homogeneity of variances was evaluated
using Levene’s test (p > 0.05) [15,16]. All obtained p-values are presented in Table 2.

Minimum and Maximum Reflectance are calculated using the formulas:

R = (R,R,..R)

R = _(R,R,..R)
where R =~ and R __ are the minimum and maximum reflectance values within the
sample; R,R,..,R are the individual reflectance measurements; and n is the total number of
measurements.
Mean Reflectance represents the average intensity of reflected light within the analysed
spectral range and characterises the general reflectance level of the object. It is calculated as:

n
—1213
M—n. i
=1

Where R; is the reflectance value for the i-th measurement, and n is the total number of
measurements [17, 18].

Standard Deviation quantitatively indicates the dispersion of reflectance values from the
mean, allowing for the assessment of how statistically distinguishable the spectra are. It is
calculated using the formula. It is computed as:

o= ARk -0

where u is the mean reflectance, R; is the reflectance value of the i-th measurement, and n is
the total number of measurements.

Before each imaging session, the camera was calibrated using a white reference standard
(Spectralon 99%) and a dark frame (with the lens covered). The distance between the lens of the
Figspec FS-13 hyperspectral camera and the specimen was 20 cm. [llumination was provided
by natural daylight.

Coefficient of Variation (CV) expresses the degree of variability and enables the evaluation
of how variable the insect spectra are relative to their mean value. It is calculated using the
formula:

cv = 2x 100,
u

where o is the standard deviation and u is the mean reflectance.
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Rate of Change (RoC) is a dynamic parameter describing the rate of reflectance coefficient
variation over time. It helps assess the temporal dynamics of spectral properties in a single

subject. The formula is:
R,—R;

AR = :

where R, and R, are reflectance values at time points T; and Ty, respectively.
Delta Reflectance (4R) indicates the difference between maximum and minimum reflectance
values within a specific spectral range or between two measurement conditions:

AR=R__-R_

X min

where R and R are the minimum and maximum reflectance values within the sample.

Spectral Bandwidth refers to the width of the spectral range in which significant changes in
reflectance occur. It helps to identify regions where the object exhibits distinct optical properties,
such as maximum absorption or reflection. The overlap or separation of spectral bands across
different species or conditions can be used to detect statistically significant differences. It is

calculated using the formula:

SB:Amax - Amin’
where A is the minimum wavelength, and A is the maximum wavelength.
Spectral Skewness describes the asymmetry in the distribution of reflectance and absorption
values. It is calculated using the formula:

1 Ri—
55 = Lyp Aty

where o is the standard deviation, u is the mean reflectance, R; is the reflectance value for the
i-th measurement, and n is the total number of measurements.

The calculated parameters, such as minimum and maximum reflectance, mean reflectance,
standard deviation, and coefficient of variation, enable a quantitative assessment of the spectral
characteristics of the studied objects and allow for the identification of differences among them.
Methods such as Principal Component Analysis (PCA), along with metrics like rate of change and
delta reflectance, provide a more comprehensive understanding of the variability in spectral
features. These data form the basis for the further development of classification models and
can be employed for effective detection and monitoring of pests in agricultural fields, thereby
contributing to the enhancement of crop protection systems.

Results

The images present the spectral characteristics of insects obtained via hyperspectral imaging
[19-22]. Each insect specimen and its corresponding spectral curve are assigned matching
numbers; for instance, the first red line in the Raw Spectrum graph corresponds to specimen
number one in the hyperspectral image [23]. Chaetocnema aridula is a small, oval-shaped insect
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measuring 2-3 mm in length (Figure 1). Its body exhibits a shiny surface with a greenish-bronze
sheen. The elytra, pronotum, and legs are uniformly black.

According to the Raw Spectrum graph, the insect demonstrates low reflectance due to its
dark colouration, which absorbs a significant portion of incident light (Figure 2). A reflection
peakis observed in the 500-750 nm range, while a decline in intensity beyond 750 nm indicates
reduced chitin reflectivity in the near-infrared region, which is typical of dark-coloured surfaces.
The highest reflectance is recorded in the first sample, attributed to the smoother surface
texture of the elytra.
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Figure 2. Spectral characteristics of Chaetocnema aridula

In contrast, the lowest reflectance is observed in the fourth sample, which was positioned
with its abdomen facing upward, thereby reducing the amount of reflected light. The Variance
Scatter Plot for Chaetocnema aridula displays low data density, which can be explained by
the insect’s small size and its morphological and spectral characteristics. Due to the limited
number of pixels captured during hyperspectral imaging, less spectral information is collected.
Moreover, the presence of pigments that absorb light within specific wavelength ranges reduces
the overall spectral variability, resulting in a sparser distribution in the scatter cloud.

The imago of Tettigonia viridissima reaches a length of 20-25 mm, with colouration ranging
from green and yellow to pinkish-yellow (Figure 1). The head features a well-defined, laterally
compressed vertex and is equipped with antennae. The male’s forewings possess a stridulatory
organ, consisting of a mirror, a transparent resonating membrane, and a stridulatory section.
In the Raw Spectrum graph, the highest reflectance is observed in the first sample, where the
selected region includes the wings (Figure 3).
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Figure 3. Spectral characteristics of Tettigonia viridissima

The wing membrane reflects more light than the insect’s chitinous exoskeleton. The lowest
reflectance is recorded in the second sample, where the wings are not visible in the image. The
size and position of the wings enhance the overall spectral intensity due to light scattering. The
spectral peakis observed in the 500-750 nm range, while the intensity decrease beyond 750 nm
indicates a reduction in chitin reflectance in the near-infrared spectrum. In the Variance Scatter
Plot, the high point density observed in the scatter cloud can be attributed to the uniformity of
the cuticular structure and the larger body size of Tettigonia viridissima. With a greater surface
area, more spectral data is collected from various regions, leading to an increase in point
density. The spectral characteristics remain relatively uniform due to the consistency in surface
structure across the insect’s larger body.

Chorosoma schillingi measures 11-15 mm in length and has a slender, yellow-green body
(Figure 1). The fifth sample exhibits the highest intensity due to its lighter colouration and less
dense chitinous exoskeleton, which allows more light to be reflected (Figure 4). In contrast, the
first sample shows the lowest intensity because of its rougher body surface, which causes more
light scattering. The spectral graph shows an intensity peak in the 500-780 nm range, indicating
limited reflection in the near-infrared spectrum. In the Variance Scatter plot, the moderate
point density is associated with the insect's narrow body. A narrower body provides a smaller
surface area, which restricts the amount of spectral data collected. This results in an average
point density, as spectral variability is less pronounced due to the smaller volume of data.
Additionally, the insect's narrow shape may contribute to more localised spectral differences,
such as segmentation or structural variations, which increase data spread and reduce overall
density.
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Figure 4. Spectral characteristics of Chorosoma schillingi

Loxostege sticticalis has light brown forewings with a dark brown pattern and greyish-brown
hindwings (Figure 1). It features a head with compound eyes and simple thread-like antennae,
measuring 17-19 mm in length. The spectral intensity peak falls within the 500-780 nm range
(Figure 5). The first sample has the lowest reflection coefficient due to its darker, brownish
colouration. In contrast, the second sample, which has a lighter body, exhibits the highest reflection
coefficient. According to the Raw Spectrum graph (Figure 5), the head reflects significantly less
light than the wings. The wings exhibit a higher reflection coefficient than other body parts due
to their structure, which allows them to reflect more incident light rather than absorb it. Wing
venation and fine scales, characteristic of Lepidoptera, contribute to this effect. Scales on the
wings can be pigment-based, determining colouration, or structural, producing optical effects
such as iridescence or sheen through light interference, which enhances reflectivity. Some
scales possess microscopic structures that interact with light, causing reflection and refraction,
thereby significantly increasing wing reflectivity even in the absence of bright pigments. The
wing surface, covered in scales, is relatively smooth at the microscopic level, further enhancing
light reflection. The light-coloured wings of Loxostege sticticalis enhance reflectivity despite the
presence of brown pigments. The thin and transparent wing membrane also contributes to a
higher reflection coefficient than other body parts. High reflectivity may be an adaptive trait,
aiding in temperature regulation by reflecting sunlight and providing camouflage by blending
with bright surroundings, such as sunlit grass.
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Figure 5. Spectral characteristics of Loxostege sticticalis

Calliptamus italicus ranges in length from 20 to 25 mm and is predominantly brown and
yellow-brown in colour (Figure 1). The spectral graph shows the highest reflection coefficients
in the third and fourth samples, while the first, second, and fifth samples have the lowest
(Figure 6). The third and fourth samples have visibly yellow abdomens, whereas the others are
positioned at different angles, making them appear darker. The intensity peak occurs within the
550-750 nm range, decreasing in the near-infrared spectrum.
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Figure 6. Spectral characteristics of Calliptamus italicus
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The Raw Spectrum graph displays spectra from the head and limbs. The head is darker
than the abdomen and limbs due to the presence of pigments such as melanin in the cuticle.
Dark pigments absorb more light, reducing reflectivity. This darker colouration may provide
camouflage and protection against ultraviolet radiation, both crucial for survival. Additionally,
lower reflectivity could result from the denser chitin composition of the head. In contrast, the
limbs are lighter in colour, containing fewer pigments, which results in higher reflectivity. This
lighter colouration helps reflect sunlight, preventing overheating during active movement.

Imago Laodelphax striatella measures 4 mm in length (Figure 1). Males have yellow bodies,
while females are black-brown with black-striped patterns. Their transparent wings feature
a brownish smear on the inner side in females or a partially smoky appearance in males. Due
to this sexual dimorphism, the spectra of males and females may differ based on pigment
composition. The first sample has the lowest reflection coefficient, while the second and third
samples have the highest (Figure 7). Samples positioned with their abdomens facing upward
may show lower intensity, whereas those with wings facing upward exhibit higher reflectivity
within the same sex. The spectral intensity peak occurs within the 550-750 nm range. In the
Variance Scatter plot, the low point density is attributed to the insect’s small size, which limits
the number of spectral data points captured.
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Figure 7. Spectral characteristics of Laodelphax striatella

The generalised spectral characteristic data are presented in Table 1. The statistical analysis
of the data allowed for the identification of key patterns in the spectral characteristics (Table
2) of the insects, the assessment of their variability and stability, and the clear and informative
visual presentation of the results.

The highest maximum reflectance is observed in Chorosoma schillingi due to its light pigment
and in Loxostege sticticalis due to the reflective ability of the wing membrane, while the lowest
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is seen in Chaetocnema aridula due to its dark pigment. Mean Reflectance simplifies complex
spectral data into a single numerical value, making it easier to compare between individuals
or species. Chaetocnema aridula has the lowest mean value, which corresponds to the lowest
reflection intensity among all the samples. Laodelphax striatella shows the highest mean value
due to the presence of light pigments and nearly uniform reflectivity across the samples of the
species.

Table 1
Spectral characteristics of insects
Ne Species Body part | Wave lenght (nm) Reflection
coefficient (%)

1 | Chaetocnema aridula Body 500-750 10-20
2 | Tettigonia viridissima Body 500-750 20-25
3 | Chorosoma schillingi Body 500-780 35-45
4 | Loxostege sticticalis Body 500-780 20-40

Head 500-750 15

Wings 500-780 30-38
5 | Calliptamus italicus Body 550-750 22,5-35

Head 500-750 20-25

Legs 500-750 35-40
6 | Laodelphax striatella Body 550-750 22,5-37,5

The Standard Deviation values among the presented samples are low, confirming the
reproducibility of measurements within a species. For instance, in Chaetocnema aridula, o =
2.89% for reflection at 750 nm, meaning most values lie within +2.89% of the mean. High values
suggest measurement errors or biological variability, with a greater diversity of characteristics
within a species. For samples with high values (e.g., 15%), additional tests such as the t-test
should be conducted. This indicator also allows for the assessment of variability within a
species: if the reflection o increases sharply over the course of a year, it may indicate adaptation
to new environmental conditions.

Tettigonia viridissima and Chorosoma schillingi have low Coefficient of Variation values,
indicating high reproducibility of data. Chaetocnema aridula, Loxostege sticticalis, and
Laodelphax striatella exhibit moderate variability, linked to biological heterogeneity among
the samples, such as age differences and cuticle condition. Stable species demonstrate low RoC
values, indicating the stability of their optical properties. Loxostege sticticalis has a primary RoC
= 15, a relatively high rate of change. Combined with a high AR (20%), this suggests significant
variability in reflectance, possibly due to age differences within the sample and varying cuticle
conditions (e.g., moulting or damage). Calliptamus italicus shows a sharp increase in RoC =15 in
the head region, where the colouration significantly differs from the rest of the body.

Stable species also exhibit lower AR under changing conditions. The AR value of 5% in
Tettigonia viridissima indicates the species' stability. Values of 10-20% exceed the natural
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fluctuation typical of stable populations. In a small sample, this is not significant, as random
fluctuations distort the result. Elevated AR and o values in some species suggest the need to
account for external factors.

Table 2
Statistical analysis of spectral reflection coefficients
Ne 9 o 8 .E 8 = o
n = = = I o o g = =
n = 8 s 8 s 5.9 = 8 = @
) < 3] O ) o = a ) &} ] = =
5 o o S | = A 58| 5 3 = ,
5] > = = 5 - == o I~ ) S %)
o, = Q [} o~ I D (4] E Y < 5]
n S ~ ~ - < o o = c
m c é < _g O B = ! q>)
E E [«5] = [«5] = (<}
= O [ 2 —
9]
1 | Chaetocnema | Body 10 | 20 15 | 2,89 | 19,25 | 15 - 10 0,15 | 0,30
aridula
2 | Tettigonia Body 20 25 1184 | 1,44 | 7,84 | 184 - 5 0,55 | 0,70
viridissima
3 | Chorosoma Body 35 | 45 [ 324 2,89 | 891 | 324 - 10 0,08 | 0,60
schillingi
4 | Loxostege Body 20 | 40 | 30 | 577 |19,25| 30 15 20 0,03 | 0,02
sticticalis Head | 15 | 15 | 15 | 0 0 15 | 19| o | 100 | -
Wings | 30 | 38 | 34 | 2,31 | 6,79 34 4 8 0,40 | 0,80
5 | Calliptamus Body |[22,5| 35 |265| 3,61 |13,62| 26,5 4 12,5 | 0,07 | 0,25
italicus Head | 20 | 25 [225| 1,44 | 642 | 225 | 15 | 5 | 0,65 | 0,90
Legs 35 | 40 |375| 1,44 | 3,85 | 37,5 | 11 5 0,75 | 0,85
6 | Laodelphax Body |[22,5|375| 33 | 4,33 |13,12| 33 - 15 0,04 | 0,10
striatella

Overall, all species exhibit nearly identical Spectral Bandwidth values due to the similar
organisation of the chitinous exoskeletons, as they belong to the same class. Among the samples,
a slight positive skew in Spectral Skewness is observed in Chorosoma schillingi, Calliptamus
italicus, and Laodelphax striatella, which is attributed to the presence of pigments that are rare
in the sample but intense. No asymmetry is observed in the remaining species (Table 3). A
positive value of Spectral Skewness indicates a shift of the reflectance spectrum towards the
long-wavelength region, which may suggest the predominance of dark pigments. Conversely,
negative skewness indicates stronger reflectance in the short-wavelength range, implying the
presence of pigments that more effectively reflect blue and green light.
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Table 3
Statistical analysis of the spectrum range
Ne Species Body parts | Min | Max Spectral Spectral
Bandwidth | Skewness

1 | Chaetocnema aridula Body 500 | 750 250 0

2 | Tettigonia viridissima Body 500 | 750 250 0

3 | Chorosoma schillingi Body 500 | 750 250 0,390

4 | Loxostege sticticalis Body 500 | 780 280 0
Head 500 | 750 250 -
Wings 500 | 780 280 0,312

5 | Calliptamus italicus Body 550 | 750 200 0,408
Head 500 | 750 250 0
Legs 500 | 750 250 -0,204

6 | Laodelphacx striatella Body 550 | 750 200 0,618

The statistical data processing results were visualised using SigmaPlot 15.0. The data in
Figure 8 are presented in a colour gradient, covering the wavelength range indicators and
spectral skewness. Darker areas (dark blue) represent negative skewness values, indicating
a leftward shift in the distribution. The gradual transition to yellow-orange colours reflects
positive skewness values, suggesting a rightward shift in the distribution. This allows for the
visualisation of differences in spectral shape or data distribution, where brightness and colour
gradation help easily identify areas with varying degrees of asymmetry.

Spectral Skewnes§

Note: x-axis - maximum wavelength value; y-axis - minimum wavelength value; z-axis - spectral
skewness
Figure 8. Wavelength indicators (nm) and spectral skewness

The data in Figure 9, presented in a colour gradient, reflect the values of the reflection
coefficient, rate, and delta of reflection. The dark blue areas indicate higher reflectivity of
the studied objects, as well as a range with lower values of rate and delta of reflection. This
may suggest stable or slow reflection processes in the studied samples. The orange-red areas
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demonstrate lower values of the reflection coefficient, which are associated with higher values
of the rate and delta of reflection, respectively.

28 60> ~ 38

> ®
~ 15 xo®
%, 20\ S e
% 20 *?3"\
50 W

Note: x-axis - maximum reflection coefficient value; y-axis - minimum reflection coefficient value;
z-axis - rate and delta of reflection

Figure 9. Reflection coefficient, rate, and delta indicators

These areas may indicate changes in the exoskeleton structure or the chemical composition
of the insect body or its parts, leading to rapid variations in the reflection characteristics, which
are displayed in the colour gradient of hyperspectral images. The colour gradient serves as a
tool for quickly identifying areas with unique characteristics.

Discussion

This work represents the first study of the phenotypic traits, where spectral characteristics
of pest entomofauna in wheat agrocenoses were described using hyperspectral imaging and
computer vision technologies. The imaging demonstrated the high sensitivity of the method to
differences in the reflectivity of the exoskeleton. The variation in intensity reflects the variability
between different body parts and morphological features of the individuals [24-26], such as
pigmentation, density, chitin structure, and age. Despite the differences of each individual
sample, the spectral curves exhibit similar intensity and wavelength for each species, which
forms the basis for their identification [27,28]. The obtained spectral signatures provide a solid
foundation for developing machine learning algorithms that enable automatic classification of
pests based on their unique reflectance spectra [29,30]. Future work will focus on building and
validating models such as PLS-DA, SVM, and neural networks using the presented set of spectral
profiles to create effective pest monitoring systems [31,32].

The study results show that reflectivity decreases with the presence of a larger amount of
dark pigment in the cuticle. Higher reflectivity is observed in insects with lighter body coverings,
such as Laodelphax striatella with yellow pigment and Chorosoma schillingi with green pigment.
This supports previous research where it was found that insects with white, red, orange, and
yellow colouration exhibit high reflectivity, a property also observed in some green species [12].

The combination of pigment composition, surface smoothness of the chitin, and cuticle
density is also crucial. Insects with lighter colouration and a matte or rough body surface will
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exhibit lower reflectivity. Among all the studied insects, Loxostege sticticalis spans the near-
infrared spectrum due to the effective reflection of light from its smooth, light-coloured wing
surface at the micro level. The wings are covered with microscopic scales that act as a diffraction
grating, causing light interference. This creates iridescence. Keratin and chitin in the wings form
translucent layers that reflect light. Bright reflection may be an adaptation: it aids in camouflage
among foliage, attracts mates, and prevents overheating of the wings. The bodies of insects
are typically covered with a matte cuticle with roughness that scatters light, while their legs
and antennae have setae that absorb light, leading to the lowest reflectivity in these parts of
the body. Additionally, the heads of insects generally contain more dark pigments than other
body parts, which may serve as protection against ultraviolet radiation, as seen in Calliptamus
italicus. Overall, insects with a predominance of melanin colouration exhibit the highest peak in
the visible range (500-750 nm), with little or no reflection in the near-infrared spectrum. The
combination of small size, dark colouration, and matte covering results in the lowest reflectivity
coefficient, as observed in Chaetocnema aridula.

Based on the statistical analysis, the most stable species is Tettigonia viridissima, with the
least variation observed within the sample. The most significant intra-species differences are
found in Loxostege sticticalis, due to both the small number of objects in the sample and the
greater diversity of colouration and wing structure, which increases variability. The study of
spectral characteristics opens up opportunities for the application of technology [33,34] in
precise, rapid, and non-invasive research on the morphology, taxonomy of insects, and pest
detection in fields.

Conclusion

In this study, the spectral characteristics of the wheat pests Chorosoma schillingii, Loxostege
sticticalis, Tettigonia viridissima, Chaetocnema aridula, Calliptamus italicus, and Laodelphax
striatella were described for the first time. The obtained data provide insights into how insects
interact with light, reflecting, transmitting, and absorbing it, opening new opportunities for
their classification and efficient application in agricultural practices.

The spectral characteristics of insects not only help create databases for their identification
but also reveal the adaptive features of their colouration in response to light exposure. Light
colouration can help prevent overheating by reflecting sunlight, while dark colouration protects
against ultraviolet radiation. The diversity of colours on different parts of the insect body is a
result of such ecological adaptations.

The highest reflectance was demonstrated by the Chorosoma schillingii sample, which
is related to its smooth structure and light colouration, while the lowest was observed in
Chaetocnema aridula due to light absorption by its dark pigment. The other studied species,
despite their light exoskeletons, have low reflectance due to the matte texture of their covers.

Hyperspectral imaging, which covers a wider range of the electromagnetic spectrum, allows
the consideration of nuances that are not visible to the naked eye. The structure of the insect’s
chitinous cover; its roughness, and microstructures also affect reflectance. The practical application
of hyperspectral imaging requires taking into account factors such as the time of day and lighting
conditions during the imaging process in order to obtain accurate and comparable data.
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Thus, the results of the study expand the possibilities for applying hyperspectral imaging
to the study of insect exoskeletons, which, in turn, opens new horizons for using these data in
agriculture and entomology.
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I'unepcneKTpa/iabl AepeKTepAi naljaaaHy apKbLabl )Ka3/bIK, GUJail 3USHKECTEPiHIH CIEKTPJIiK
cunaTTaMaJ/iapbl: JUAarHOCTUKACHI XK9He TYCiHiH 6eiiMaesy epekmieaikrepi

P.M. YasimeBa*!, A.B. Ocunoga!, M.M. Kagepuna?, A.A. ®aypart'1, C.B. ’KaHrasun?
!Topaiirvipos yHusepcumemi, [lasaodap, Kasakcmax
2JL.H. 'ymusee amsiHdarul Eypasus yammulk yHugepcumemi, Acmama, Kazakcman

Anparna. [unepcnexkTpanabl TycipyAi mNOaijajaHa OTBIPbIN, COJTYCTiK-1bIFbIC KaszakcTanga
»Ka3AblK OHUJaldiMeH OGaW/IaHBICTBI aJIThl 3USHKeC TYpPiHiH (Chorosoma schillingii, Loxostege sticticalis,
Tettigonia viridissima, Chaetocnema aridula, Calliptamus italicus >xaHe Laodelphax striatella) cnekTpJiik
CUIlaTTaMajlapbl ajfalll peT 3epTTeafi. Bys 3epTTey ocbkl TakbIpbll O6OWbIHIIA 6ap 6O0JIFaHbI
GipHelIe FBIIBIMUA eHOEKTep/Ai TOJABIKThIPaAbl. CleKTpJepAi Tanjay KoHAIKTEePAiH *KapbIKThl Kaaan
HIaFbLIBICTBIPAThIHBIH, GepeTiHiH k9He ciHipeTiHiH KepceTTi, 6yJ1 oCbl JAepeKTep/i ericTikTepjeri
3USHKECTePAi allbIpbil TaHy TalCblpMaJapblH/Ja OJaH api KoJijJaHyFa MyMKiH/iK 6epei. 3epTTenreH
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TypsiepAiH ciekTpi 500-780 HM apasibIFbiHAA 6013/ bl. JKOFaphl AFbLIBICY XKOH/IIKTEp JIEHECiHiH KeHin
K9He Teric allMaKTapblHa T9H, ajl KapaHFbl, 6ipKeJIKi eMec oHe KeJip-0ybIpJibl 66JiKTep XKapbIKThI
IIalIbIPaThIN, »KaJlbl IAFbLIBICTBIPYAbl TOMeHJeTeAl. 3epTTereH YATiepAiH iliHje eH »KoFapbl
HmaFbLIBICY KabineTi Chorosoma schillingii TypiHiH yJricinfie Teric KypblJibIM MeH >XaObIHAAP/bIH
alllbIK TYCiHiH yiJecyiHe 6aillaHbICThI 6aiiKaaaabl. By coHZjaii-aK »kaKblH UHPPAKbI3bLJI CIEKTPiHAET]
KapKbIH/bI [IaFbLIBICYMeH 6aiiaHbIcThl. EH TeMeHri marbLibicy koadgouuuenti Chaetocnema aridula
TypiHJle TipkeJsireH, 6y/J1 OHbIH Kapa NUTMEHTIMeH apbIKThl CiHipyMeH TyciHAipineni. Kenteren
6acka TypJiepAiH albIK TYCTi 3K30CKesJeTiHe KapaMacTaH, OJIap/blH LIAFbLIbICY Ko3PuireHTI
YKaObIHAPABIH KYHTIPT KYpblIbIMbIHA OAaW/IaHBICThI TOMEH GOJIbIN Kasaabl. XKoHIKTEp/iH Tyci Tek
eciM/iK GOHBIH/A )KacblpyFa KeMeKTecill KaHa KOMMall, COHbIMeH KaTap KopllaFaH OpTa KaFAaljapblHa
6eitimaesy 60/1ybl MyMKiH. ALIBIK TYCTEP KYH C9yJIeCiH LIaFblIbICTbIPYFa KOMEKTeCIH, apThIK, KbI3bII
KeTyZleH KOpFaljbl, ajJl Kapa TycTep yabTpaduosieT cay/eciHeEH KOPFAHBIC POJIiIH aTKapybl MYMKIiH.
KeHpikTepaiy AeHe GesikTepiHiH ap TypJi TycTepi 60/1ybl MyMKiH, 6yJ1 9KOJOTUSJBIK XXaFjaijapFa
byHKIMOHaNABI 6ediMAenyMeH 6alIaHbICTHI.

TyiiH ce3aep: runepcneKTpaibl BU3yaau3alus, COIEKTpJiK cUlaTTaMmasjap, a3HToModayHa, 6ujai
arpoLeHo3bl, 3UTHKeCcTep

CHEKTpaJIbeIe XapaKTEepUCTUKH Bpe,ZlHTEJIEﬁ HpOBOﬁ NIIeHMUI bl C HCNI0JIb30BAHHUEM
runepCcneKTpajbHbIX JAHHBIX: JUATHOCTHKA U aAdlITAIIHOHHBbIE 0COGEHHOCTH OKpaca

P.M. YasimeBa*!, A.B. Ocunoga', M.M. KaBepuna?, A.A. ®aypat!, C.b. ’Kanrazun?
ITopatizbipos yHusepcumem, I[lasnodap, KazaxcmaH
2Eepasutickuti HQYUoHaAbHbIU yHUsepcumem um. JLH. 'ymusesa, AcmaHa, Kazaxcmau

AHHoTanusa. C WCHoJb30BaHMEM THUIEPCIEKTPAJIbHOW CBEMKH BIepBble OBLIM HCCIEL0BAHBI
CIeKTpaJibHble XapaKTEePUCTUKHU LlIeCTH BUAOB BpeauTenei (Chorosoma schillingii, Loxostege sticticalis,
Tettigonia viridissima, Chaetochema aridula, Calliptamus italicus u Laodelphax striatella), cBsi3aHHBIX
C spOBOM MIIeHULeH B ceBepo-BOCTOYHOM KaszaxcTaHe, 4TO [OINOJHSET HEMHOTOYMC/IEHHbIE
CyILLeCTBYIOLIM e UCCJIe/JOBAaHUSA 10 JAHHOM TeMe. AHAJIM3 CIeKTPOB I0Ka3aJl, KaK HaCEKOMble OTPAXKaIoT,
nepesaloT U MOIJIOIAIOT CBET, YTO OTKPbIBAET BO3MOXKHOCTH JJIs1 JaJbHENIIEro NpUMeHeHHUsl 3TUX
JIAHHBIX B 33/layax paclo3HaBaHUA BpejuTesield Ha NoJsax. McciefpoBaHHble BUABI HMEIOT AMaNa3oH
cnektpa B npefesax 500-780 HM. Boicokuit k03dpdUIIMEHT OTpaKeHUSI XapaKTepeH [AJis CBETJIbIX
M IJIaJIKUX y4acTKOB TeJsla HAaceKOMbIX, B TO BpeMsl KaK TeMHble, HEPOBHbIE M LIEPOXOBAThble 4acTH
paccerBaIOT CBET, CHIKAsl OOLIYI0 OTpakaTeJIbHYI0 COCOGHOCTb. Cpesiu MccieloBaHHBIX 06pa3L0B
HanboJsiee BbICOKAs OTpakaTeJsbHas CIIOCOOHOCTb HabJlofaeTcsa y 3k3eMIuiApa Buja Chorosoma
schillingii 6y1aroiapsi COY€TAHUIO IV1a/IKOW CTPYKTYPhI U CBETJIOT0 OKpaca IOKPOBOB. ITO TAKXKe CBSI3aHO
C MHTEHCUBHBIM OTpa)keHUeM B OJimkHeM HHpakpacHoOM crnekTpe. HauMmeHbmnil koadpduureHt
oTpaxkeHusl 3adpukcupoBaH y Chaetocnema aridula, 4yTo 06bsCHSIETCSA MOIJIOLEHHEM CBETA TEMHBIM
nurMeHToM. HecMOTpsl Ha CBeTJIbIA 3K30CKeJIeT y GOJIbIIMHCTBA JPYrUX BUJAOB, UX Ko3pPuuyeHT
OTpaXKEHUs OCTAeTCsl HU3KKMM M3-3a MaTOBOM TEKCTYpPbI NOKPOBOB. LIBeTOBOE OKpallMBaHH e HACEKOMBIX
He TOJIbKO CIOCO6GCTBYeT MacKMPOBKe Ha pacTUTeJbHOM (OHe, HO TaKXKe MOXKeT ObITh afanTaluein
K YC/JI0BUSIM OKpyxXawued cpegbl. CBeT/iafg OKpacka CHOCOOGCTBYeT OTpaKeHUI0 COJIHEYHOTO
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Spectral Characteristics of Spring Wheat Pests Using Hyperspectral Data: Diagnostics and Adaptation
Features of Colouring

CBeTa W NpPeJ0TBpALIaeT Meperpes, B TO BpeMs KaK T€MHas OKpacka MOXET CJAYKUTb 3alIUTOH OT
yJIbTPadr0eTOBOr0 U3JydyeHUs. PasHble 4acTU TeJsla HACEKOMBIX MOTYT UMeTb pas/IMuHble OKPACKHY,
YTO CBSA3aHO C QYHKIIMOHAJbHBIMU aJJallTAL[USIMU K 9KOJIOTHYECKUM YCIOBUSIM.

KiloueBble cj10Ba: runepcrnekTpalbHas BH3yaau3alius, CIeKTpaJbHble XapaKTePUCTHUKH, IHTOMO-
dayHa, arpoueHo3 NIeHUIb], BpeAUTEH
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