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Abstract. Nowadays, modern agriculture, faced with declining economic
output and deteriorating environmental conditions, requires sustainable
productivity growth. One promising direction is to find alternatives to
traditional agrochemicals. Plant extracts are a promising solution offering
multifunctional benefits due to the diversity of secondary metabolites. This
review discusses the chemistry of extracts and production methods, including
traditional maceration/percolation and more rapid methods for heat-
sensitive compounds. Particular attention is paid to the phytostimulatory
and biostimulatory effects of extracts, such as stimulation of cell division,
modulation of stress-related genes, improvement of mineral nutrition by
stimulating rhizosphere microbiota, increasing photosynthetic efficiency,
and activation of salicylic and jasmonic acid pathways. Antimicrobial and
allelopathic properties are also discussed. Key challenges such as biochemical
instability, dosing issues, and lack of standardized protocols are highlighted.
Solutions are proposed, including the development of formulated products,
the use of omics analysis, and the creation of databases. Ultimately, it is
emphasized that extracts are versatile tools for sustainable farming systems
that require further standardization and integration with digital technologies
to unlock their full potential.

Keywords: Plant extracts, biostimulants, phytopstimulants, allelopathic
effects, sustainable agriculture, secondary metabolites

Introduction
Modern agriculture faces significant challenges, such as the need to increase the productivity
of agricultural crops while meeting rising demands for environmental safety, addressing climate

change, and reducing the chemical load on agroecosystems [1-3]. Traditional methods of plant
protection and growth stimulation based on synthetic pesticides and fertilizers often lead to
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negative consequences, such as pollution of soils and water bodies, development of resistance
in pathogens and pests, and reduction of biodiversity [4-7]. This situation dictates an urgent
need to develop and implement innovative, sustainable solutions that could ensure high yields
without harming the environment and human health.

In this context, plant extracts represent an extremely promising, but still underutilized
alternative [4,6]. Plant extracts contain a rich spectrum of secondary metabolites, natural
biologically active compounds with polyfunctional effects, from growth stimulation and
increased plant resistance to stress to direct antimicrobial and insecticidal effects [8-10].
However, despite their obvious advantages, the widespread practical use of plant extracts in
agricultural systems is constrained by a number of key problems. These include biochemical
instability of active components, difficulties with precise dosing due to nonlinear effects, and a
lack of scientifically sound protocols for their use in the field [11,12].

This article aims to systematize modern knowledge about the chemical composition
and methods of obtaining plant extracts, to summarize their functional, antimicrobial, and
allelopathic effects on plants. Particular attention will be paid to the physiological and
biochemical changes occurring in plants under the influence of extracts, as well as to the current
problems of standardization and variability of their action. The article will propose specific ways
to solve these problems, including the development of new formulations and the introduction
of modern analytical approaches, which will reveal the full potential of plant extracts as a key
element of sustainable agroecological strategies.

Chemical composition of extracts and methods of their production

The composition of plant extracts varies depending on the botanical species, the part of the
plant used (leaves, roots, fruits, flowers), growing conditions, time of collection, and extraction
technology. [13-16]. The most common groups of compounds are polyphenols, alkaloids,
saponins, terpenoids, and essential oils [10,17]. These secondary metabolites have different
effects depending on their chemical nature (Figure 1).

Polyphenols and their representatives, such as flavonoids, tannins, and phenolic acids, have
antioxidant and antimicrobial activity against gram-positive bacteria [18]. While alkaloids
are neurotoxic to pests and can modulate the hormonal balance of plants, which shows their
double-positive effect [19-21]. Saponins, as another type of secondary metabolite, affect the
permeability of cell membranes, play a role in protecting against pathogens [22]. Terpenoids and
essential oils regulate growth, have phytohormonal activity, and can suppress the development
of phytopathogens, which is similar to the effect of saponins [23]. The extraction technology
must be of primary importance for obtaining certain effects.

In general, with the development of science and technology, extraction methods have also
developed. Extraction methodsvary depending onthe nature ofthe compounds and their physical
and chemical properties; that is, there is no universal method for obtaining all compounds,
which is logical [24-26]. We can divide them into classical methods and accelerated extraction
methods, with the allocation of a separate group for the extraction of volatile compounds.
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Figure 1. Secondary metabolites and their effects [13-23]

Classic extraction methods include maceration and percolation, which can be performed
using a variety of solvents [26-28]. Maceration is the process of steeping plant material in a
solvent for a period of time to extract the active substances [29]. Percolation, on the other hand,
involves passing a solvent through a layer of plant material, ensuring a continuous renewal of
the extracting agent [30]. Solvents often used include aqueous solutions, alcohol solutions of
varying concentrations, and acetone solutions, the choice of which depends on the polarity and
solubility of the target components [31].

The second group of extraction methods, used for heat-sensitive components, often employs
accelerated extraction methods such as microwave-assisted extraction (MAE), ultrasonic
extraction (UAE), and supercritical fluid extraction (SFE), which minimize thermal exposure
[32-34]. MAE uses microwave radiation to rapidly and uniformly heat the solvent and matrix,
which reduces extraction time and reduces the degradation of heat-sensitive compounds
[35]. UAE is based on the cavitation effect created by ultrasound waves, which promotes the
destruction of cell walls and improves mass transfer, which also allows extraction to be carried
out at lower temperatures [36,37]. SFE uses supercritical fluids, most often carbon dioxide, as a
solvent; this method is especially valuable for heat-sensitive substances, since extraction occurs
at moderate temperatures and upon completion of the process, the solvent is easily separated
without residue, preventing thermal degradation [38-40].

Hydrodistillation is a classic method for extracting volatile compounds such as essential
oils from plant material. In this process, plant material is placed directly into water, which
is then heated to the boiling point [41,42]. The resulting steam, passing through the plant
material, carries with it volatile aromatic components, which are then condensed and collected
as a mixture of water and essential oil, easily separated due to the different densities of the
components [42-44].
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Importantly, all secondary metabolite extraction stages are processes that undergo
standardization of extracts and are a key step to ensure their consistent quality and efficacy.
In particular, standardization can be achieved by spectrophotometric and chromatographic
determination of the content of specific biomarkers [45]. Spectrophotometry allows for
the quantitative assessment of the concentration of substances that absorb light in a certain
wavelength range, based on the dependence of the absorption intensity on concentration
[46,47]. Chromatographic methods, such as high-performance liquid chromatography-mass
spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS), provide
accurate separation of extract components, allowing for the identification and quantification
of individual biomarkers, including chlorogenic acid, quercetin, and eugenol, which is critical
for confirming the authenticity and standardization of herbal preparations [45,47,48]. The
resulting extracts can then be used as biostimulants and phytostimulants.

Biostimulating and phytostimulating effects of extracts

Biostimulants and phytostimulants based on plant extracts have a complex systemic effect
on plant growth and development (Figure 2), starting with the activation of cell division and
elongation, which leads to enhanced growth and the formation of a more powerful root system
and aboveground mass [49-51]. One of the key mechanisms of their action is the modulation
of the expression of stress-induced genes, increasing plant resistance to adverse environmental
factors such as drought or salt stress [52-54]. In addition, biostimulants and phytostimulants
significantly improve the mineral nutrition of plants, promoting more efficient absorption and
assimilation of nutrients, whichinturnleadstoincreased photosyntheticefficiencyandincreased
biomass [55-57]. It is important to note that the extracts activate the metabolic pathways of
salicylic and jasmonic acids, key signaling molecules that regulate immune responses and plant
adaptation to abiotic and biotic stresses [58-60].

Enhanced growth and formation of a more powerful root system and aboveground mass
by biostimulants/phytostimulants from plant extracts occurs due to activation of division
and expansion of plant cells [60]. This process occurs due to increased synthesis of two key
phytohormones: gibberellins and cytokinins [50,61]. Gibberellins stimulate cell expansion,
promoting stem elongation, leaf growth, and fruit development by weakening cell walls
[6,62,63]. Cytokinins actively participate in cell division, stimulating their proliferation and
formation of new shoots, which leads to increased branching and total plant biomass [6,50,60].
Thus, the combined action of these hormones provides a comprehensive approach to growth
stimulation, covering both an increase in the number of cells and their subsequent expansion,
which ultimately contributes to the overall development of the plant.

Modulation of stress-induced gene expression by biostimulants and phytostimulants may
occur through activation of genes such as Dehydration-responsive element-binding (DREB),
NAC, and WRKY, which play a central role in stress adaptation [52,64,65]. For example, genes
of the DREB family are activated in response to drought and low temperatures, triggering
cascades of reactions that help cells cope with dehydration and drought stress [66-68]. NAC
and WRKY genes are large families of transcription factors involved in the regulation of various
stress responses, including protection against osmotic and oxidative stress [69-71]. Enhanced
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expression of these genes allows plants to more efficiently synthesize protective proteins and
antioxidants, minimizing damage and maintaining metabolic activity under stressful conditions.
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Figure 2. Biostimulating and phytostimulating effects of plant-derived extracts on agricultural plants

The use of plant extracts significantly improves the mineral nutrition of plants, which is most
likely due to the stimulation of the rhizosphere microbiota [72-75]. This is especially noticeable
when using extracts with a high content of organic acids and polysaccharides [76]. These
compounds serve as a source of nutrition for the soil microbiome, activating the vital activity of
microorganisms in the rhizosphere, promoting the dissolution of hard-to-reach nutrients and
their more efficient absorption by plants [76-78].

The effects of using plant extracts on increasing the efficiency of plant photosynthesis
have also been noted due to several key mechanisms [79,80]. Firstly, stabilizing the state of
chlorophylls, the main pigments responsible for light absorption, prevents their premature
destruction and thus maintains a high capacity for photosynthetic activity [79]. Secondly, the
extracts lead to an increase in the Fv/Fm index, which is a measure of the maximum quantum
efficiency of photosystem II, indicating an improvement in the use of light energy [80]. Finally,
the plant extracts may preserve the thylakoids' membrane structure under the action of phenolic
antioxidants contained in the extracts, protect the photosynthetic apparatus from oxidative
damage, and ensure its optimal functioning even under stressful conditions [81-85].
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Antimicrobial and fungicidal action

Plant extracts show significant effectiveness in combating various pathogens and can serve
as a sustainable replacement for traditional plant protection products [86-88]. The effects of the
extracts are varied and aimed at different ways of suppressing pathogenic organisms. Essential
oils derived from plants such as thyme, oregano, and basil play a special role [89-93]. They are
known for their strong fungicidal activity, capable of inhibiting the growth of fungi that cause
common and destructive diseases such as root and leaf rot [89-93]. This makes them a valuable
tool for the prevention and control of fungal infections.

Another striking example is neem leaf extract (Azadirachta indica) [94-97]. Its components
not only inhibit pathogens but also disrupt the fungal division cycle, preventing their
reproduction. In addition, they cause the degradation of sporangia - the structures responsible
for the formation and release of spores, thereby effectively limiting the spread of infection [94-
97]. This indicates a profound effect on the life cycle of the pathogen.

Antibacterial activity is also an important property of plant extracts. Extracts from plants
such as garlic, ginger, and chili peppers exhibit a strong bactericidal effect, which is due to the
presence of specific bioactive compounds [98-100]. In garlic, these are allicin compounds, in
chili peppers - capsaicin, and in all of the above plants - various phenolic acids [101-105]. These
substances can destroy the cell walls of bacteria and inhibit their metabolism, preventing the
development of bacterial diseases [18,106-108].

The conducted phytopathological studies convincingly prove the effectiveness of these
approaches. Regular use of plant extracts can reduce plant disease incidence by ~40-90%, with
the specific indicator depending on the type of crop and the specific pathogen [109-111]. Itis
important to note that the effectiveness is enhanced by integrating extracts with biopreparations
from Bacillus and Trichoderma [112-116]. Such complex use creates a synergistic effect,
providing more reliable and comprehensive protection of plants from diseases.

Allelopathic effects and growth regulation

Plant extracts have unique allelopathic effects that allow them to influence the growth and
development of crops, horticultural plants, and weeds (Figure 3) [117,118]. These effects are
due to the presence of allelochemicals, biologically active compounds secreted by plants [117].
Allelochemicals can actas natural herbicides, suppressing the growth of weeds [118]. This opens
up prospects for the development of environmentally friendly weed control strategies, reducing
dependence on synthetic pesticides. Suppression mechanisms may include inhibition of weed
seed germination, slowing down their growth, or disrupting their physiological processes [119].
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Figure 3. Allelopathic and growth-regulatory effects of plant extracts

In addition to the above-described effects on weeds, allelochemicals can cause morphological
changes in the root systems of plants. These changes can be either positive (e.g., stimulation of
lateral root growth for better nutrient uptake) or negative, depending on the concentration
of the extract and the sensitivity of the crop [118,120,121]. Thus, these compounds can
finely modulate the architecture of the root system, which is critical for plant adaptation to
environmental conditions.

Moreover, allelochemicals can inhibit or stimulate the synthesis of endogenous hormones in
plants. A striking example of such effects is black walnut (Juglans nigra) extracts, which contain a
compound called juglone [122]. Juglone is known for its ability to inhibit root cell mitosis, which
leads to slower root growth and generally suppressed plant development, especially in sensitive
species [122]. Another example is aqueous extracts of wormwood, which, as studies show, can
cause a decrease in endogenous auxins in tomato [123]. Auxins are key hormones regulating
shoot and root growth, so a decrease in their levels can affect plant development [123,124].

[t is worth noting that allelopathic properties should be carefully considered when selecting
concentrations and methods of application of extracts to the agrosystem. Incorrect application
may lead to undesirable effects on crop plants. A precise understanding of dosage and interaction
with specific crops will allow the allelopathic properties of extracts to be used to optimize plant
growth and effectively manage weeds in sustainable agriculture.
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Extracts as elements of sustainable agriculture

Plant extracts are a key element of agroecological strategies, offering sustainable and effective
solutions for modern agriculture [88,125,126]. They are compatible with organic farming
and are certified in the European Union, confirming their safety and compliance with strict
environmental standards [127]. Extracts can be combined with microbiological preparations,
creating a synergistic effect for more comprehensive protection and stimulation of plant growth
[117,118]. Their effectiveness against a wide range of pathogens without the development of
resistance is a critical quality, as they act on multiple targets, reducing the likelihood of the
emergence of resistant strains [86-88].

Field trials have convincingly demonstrated the practical value of plant extracts, which
leads to a ~17-40% increase in crop yields [128-130]. As mentioned, the use of extracts also
reduces the need for fungicides, reducing the chemical load on the agroecosystem and reducing
production costs [109-111]. Additionally, an increase in soil bioactivity is observed, indicated
by the growth of beneficial fungi and bacteria populations, which helps improve soil structure
and nutrient cycling [72-76,78]. Prospective areas in this area include extracting from non-food
residues, such as oilseed cakes or weeds [131-133]. Using these resources not only reduces
waste but is also fully consistent with the principles of the circular economy, turning what was
previously considered waste into valuable bioactive products for agriculture.

Problems of standardization and variability of action

The use of plant extracts in agriculture, despite their significant potential, faces several key
problems that need to be addressed for their widespread and effective application. One of the
main issues is the biochemical instability of extracts [134,135]. Many bioactive compounds
contained in plant materials, such as polyphenols, flavonoids, terpenes, or alkaloids, are
sensitive to light, heat, oxygen, and humidity [134-137]. This leads to their degradation during
storage, significantly reducing the effectiveness and shortening the shelf life of the products. For
example, allicin from garlic, known for its antimicrobial properties, quickly oxidizes in air and
loses activity [100,101,138]. Similarly, some terpenoids from essential oils, such as linalool or
geraniol, easily volatilize or decompose under the influence of light, reducing the biopesticide
potential of the extract [139-141]. This instability makes it difficult to produce products with
predictable quality and expiration dates.

The second problem is the difficulty of dosing. The action of plant extracts is often dose-
dependent and non-linear [80,142]. This means that a small change in concentration can lead
to a completely different effect: from optimal stimulation to no effect at all or even inhibition of
growth. For example, low concentrations of seaweed extract can stimulate seed germination and
root growth, while higher concentrations can inhibit this growth [143-145]. Without precise
data on the required dosages specific to each crop and environmental conditions, it is extremely
difficult for farmers to apply these products effectively and safely, risking either wasting the
product or even damaging the crop.

Finally, there is a lack of clinically validated application protocols in agrosystems. Unlike
synthetic pesticides and fertilizers, which have clear and proven application guidelines, most
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plant extracts do not have standardized recommendations based on large-scale, long-term field
trials [146,147]. This makes it difficult to standardize and predict their performance across
different climates, soil types, and crops, making their use empirical rather than scientifically
based.

To overcome these challenges, a number of strategic solutions are proposed. First, this is
the development of controlled-release formulations. These can be microencapsulated forms,
nanoemulsions, liposomes, or hydrogels that stabilize the active components, protecting them
from degradation [148]. For example, encapsulation of essential oils in polymer or cyclodextrin
shells can significantly prolong their activity, reduce volatility, and ensure gradual release in
the soil or on the leaf surface [149,150]. Such formulations allow for a prolonged and more
effective supply of active substances to the plant, increasing their bioavailability and reducing
the frequency of treatments.

Secondly, it is necessary to implement omics analysis methods, such as metabolomics and
proteomics, for an in-depth study of extracts. Metabolomics allows for a comprehensive analysis
of the entire set of metabolites in the extract and in the plant object, helping to understand which
compounds are responsible for biological activity and how they change under the influence
of external factors [151]. For example, it is possible to identify which secondary metabolites
in buckwheat extract are responsible for its ability to suppress weed growth, or how the
composition of the extract changes with changing storage conditions [151-154]. Proteomics
studies the proteins involved in plant responses to the extract, providing an understanding of
the molecular mechanisms of its action [155]. These methods allow for in-depth monitoring
of the action of extracts at the molecular level, identifying specific biomarkers and accurately
understanding the mechanisms of their action, which is critical for optimizing the composition
and effectiveness of drugs.

In addition, it is essential to create extensive databases of extracted bioactivity by donor
plant species, target pathogens, and crops. These databases should contain information on
the chemical composition of extracts, their effectiveness against specific diseases and pests,
optimal dosages, and application conditions for different crops. Such centralized resources will
greatly facilitate the selection of the most effective solutions for specific agricultural problems,
make the use of extracts more predictable and scientifically substantiated, and facilitate their
widespread adoption.

Conclusion

In conclusion, plant extracts are a versatile and multifunctional tool with great potential
to regulate, protect, and stimulate, thereby enhancing crop sustainability and productivity.
They could significantly transform crop production methods, especially within sustainable
agrisystems, providing environmentally friendly and effective solutions amidst the rising
demand for safe products. However, to fully realize and utilize the potential of plant extracts,
further standardization of production and application methods, comprehensive interdisciplinary
research to understand their mechanisms of action, and integration with digital precision
farming technologies are essential. Only through this holistic approach can we shift from
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empirical use to scientifically grounded and highly effective application, securing food supply
and supporting sustainable agricultural development for the future.
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AybUl mIapyaliblIBIFBI AAKbLIAAPBIHBIH, 6HIMAIJIIr MeH TYPaKThUIbIFBIHBIH, MHHAYKTOPJIaphI
peTiHje 6CiM/liK TEKTeC ChIFbIHAbLIAPABI NaliJa/JlaHy NepcneKTUBaIaphl

M. Kagbip6aes'?*, E.JI. JlanunoBal, E.B. Boiiko?!
Tomck memaekemmik yHugepcumemi, ToMck, Pecetl
Ci6ip memaekemmik meduyuHa yHusepcumemi, Tomck, Peceii

Angarna. Kasipri yakpIiTTa 3aMaHayd aybll IIapyallblIbIFbl 3KOHOMHUKAJIBIK 6OHIM KeJieMiHiH,
TeMeH/eyl )KoHe 5KOJIOTUAJBIK KaFlal/IblH HallapJiaybl asCbIH/AA 6HIMAIMIKTIH TypaKThl 6CYiH Tajan
eTeni. [lepcnekTUBTI GaFbITTapAbIH 6ipi — A2CTYpJi arpoXUMUSJIBIK NpenapaTTapra 6ajaMma Taoy.
OciMJIiK CBIFBIHBLIAPBI — EKIHIIJIIK METaO0IUTTEP/IiH OPTYPJIIriHe 6alIaHbICThI KOIT PYHKI[MOHAJIIbI
apTBIKWBLIBIKTAP/Abl YChIHATBIH MEepPCIeKTUBa/bl LielliM. bys monyaa CeIFbIHABLIAPAbIH XUMUSJIBIK,
KypaMbl MeH OHAIpy o9jicTepi, COHBIH illiHZEe ACTYpJi Malepalys/IepKoJISLIHs KOHe bICTBIKKA
ce3iMTa/sl KOCBLIBICTAp VUIIH JKbLIJAMbIpAK JJicTep TalKbLIaHaAbl. MacymanapablH, 6eJiHyiH
BIHTAJIAHABIPY, CTPeccKe GaWJIaHbICThI FeHAEPAl MOAYJIsAHUsIay, pu3ocdepa MUKPOOHUOTACHIH bIHTA-
JIAaHIBIPY apKbLJIbl MUHEPAIAbl KOPEKTEHYAI KaKcapTy, GOTOCUHTETUKAMIBIK TUIMAIMIKTI apTThIpY,
duTOropMOHAAPFA dcePi CUAKTHI ChIFbIH/ABLIAPABIH, PUTOCTUMYISALUAIIBIK, ) KoHE OUOCTUMYJISALUSIBIK,
acepJiepiHe epeklile Ha3ap ayZapbLiajibl. MUKPOOKA Kapchl XKoHE aJljiesoNaTUKaJbIK KacHeTTepi e
TaJKblJIaHAbl. BUOXUMUSABIK TYPaKChI3bIK, MeJIllepJey Maceslesepi )KoHe CTaHJapTTa/IFaH XaTTa-
MaJlapAblH, )XOKTBIFbl CUAKTHI Heri3ri Macesiesiep atamn eTijireH. [llemimMmaep yCbIHbBIIFaH, OHBIH, illiHAe
TYKbIPbIM/JIAJIFAaH 6HIMJEP/i 93ipJsiey, OMUKAJBIK, TalJay/Abl Tal/la/aHy KoHe JlepeKTep KOPbIH Kypy.
CoHj1ali-aK ChIFBIH/IbLIAP/bIH, TOJIBIK, dJIEYETiH ally YIUIiH oJlaH api cTaHAapTTay/bl XoHe UPPJIBIK
TeXHOJIOTUsIJIapMEeH UHTeTPalUsAHbI KAXKeT eTeTiH TYPaKThl ayblIlapyallblIbIK )XyHesepiHe apHaJiFaH
»KaH-KaKThl KypaJsl eKeHJiri aTalm eTiies|.

TyiiH ce3gep: OciMAiK CbIFBIHABLIAPBI, OGUOCTUMYJIATOPJAP, PUTONCTUMYASATOpPJAD, ajjesonaT-
UKaJabIK 3¢ eKT, TypaKThl ayblJ lapyallblIbIFb], eKiHIIITiK MeTaboIuTTEp
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HepCHeKTPIBbI HCII0J/Ib30BAHUA PACTUTE/IBHBIX IKCTPAKTOB B Ka4eCTBE€ CTUMYJ/IATOPOB
NPOAYKTHUBHOCTH U YCTOﬁ‘lPIBOCTPI CeJIbCKOX03HCTBEHHBIX KyJbTYPp

M. Kagbip6aes'>*, E./Jl. lanuaosa?l, E.B. Boiiko!
Tomckuii 2ocydapcmeeHHblii yHusepcumem, Tomck, Poccusi
2Cubupckuli 2ocydapcmeeHHblll MeduyuHckuli yHusepcumem, Tomck, Poccus

AHHOTanusA. B HacTosiniee BpeMsi COBpEMEHHOE CeJIbCKOE X03SIMCTBO Ha POHE CHMKEHHUsI 3KOHO-
MHY€eCKOT0 NPOU3BOJACTBA M YXY[UIEHUA YCJAOBUHM OKpYXKawlled cpelbl, HYJaeTcd B YCTOMYUBOM
pocTe NpOU3BOAUTENBHOCTH. OHUM M3 ePCIEKTUBHBIX HAallpaB/JeHUH SIBJISIETCs IOMCK aJlbTepHATUB
TPaJMIUOHHBIM arpoXUMHUKaTaM. PacTUTesbHble 3KCTPAKThl MEPCHEeKTUBHBIX MHOTI000eLaluUM
pelileHHeM, NpeJJaralliuM MHOTOQYHKLMOHAJbHble INpeuMyllecTBa 6Jiarofapss pa3sHO0Opasuio
BTOPUYHBIX MeTab0/JUTOB. B JlaHHOM 0630pe 06Cy/AaeTcsi XMMUYeCKUH COCTaB 3KCTPAKTOB U MeTO/bl
IPOM3BO/CTBA, BKJOYas TPASULHUOHHYI Malepalyio/nepKoysnuio U 6ojiee OGbICTpPblE METO/bl
JJI1 TepMOYYBCTBUTEJIbHBIX coeAuHeHUH. Ocoboe BHUMaHUe yjensdeTcl (UTOCTUMYJIUPYIOLIAM
U OGUOCTUMYNUPYOLWHUM 3pdeKTaM IKCTPAKTOB, TaKUM KaK CTUMYJUPOBaHUE JiejleHUs] KJIETOK,
MOJY/ALUSA F'eHOB, CBA3aHHBIX CO CTPECCOM, YJIy4llleHhe MUHEePaJbHOI0 IUTAHUS yTEM CTUMYJALUN
MHUKPOOHUOTHI pu3ocdepsl, noBeieHne 3¢PeKTUBHOCTH POTOCUHTE3A U BJAUSIHUE HA QUTOTOPMOHBI.
Tak»ke paccMaTpUBaIOTCd aHTUMHUKPOOHbIE U aJljieJoNaThyeckue cBoicTBa. OcBellleHbl OCHOBHbIE
npo6JsieMbl, TaKHMe KaK OMOXMMHYecKasd HeCTabUJIBbHOCTb, NPOO6JEMbl JO3UPOBAHUSA U OTCYTCTBHUE
CTaHZAPTU3UPOBAHHBIX MNPOTOKOJOB. [lpeasaraloTcs pelieHHsi, BKJoO4Yas pa3paboTky ¢opmy-
JINPOBAHHBIX MPOAYKTOB, UCNOJIb30BAaHME OMUKC aHa/IM30B U CO3JaHMe 6a3 JaHHBIX. B 3akJjroye-
HHe IOAYEePKUBAEeTCA, YTO 3KCTPAKThl ABJAITCA YHUBEpPCaJbHBIMH HHCTPYMEHTAMU JJi CUCTEM
YCTOUYMBOrO0 3eMJlefie/vs, TPEOYIOIUMHU JJaibHeHIel CTaHJapTU3aL UK U UHTEerpaLuu ¢ [uppoBbIMU
TEXHOJIOTUSIMH JJIs PAaCKPBITUS UX IOJIHOTO IOTeHIaIa.

KiioueBble cioBa: PacTuTesbHble 3KCTPaAKThbl, GUOCTUMYAATOPB], GUTOCTUMYJIATOPDI, ajjieona-
TU4YecKue 3¢ PeKThl, YCTOUYHUBOE CebCKOE X0351IMCTBO, BTOPUYHbIE METAGO0UTHI

CBeeHMs 06 aBTOpaX:

Kaodwip6aee Makcam - aBTOp-KOPPECIOHJEHT, MpenojaBaTesb-UCCae/0BaTeNb B 00JaCTH
¢dbu3U0IOrUU U GUOXMMUM PAaCTeHUH, HHXKeHep U NperoJiaBaTe b B HAQy4YHO-06pa3oBaTe/IbHOM LieHTpe
«IlepenoBasi uHXKeHepHas IIKoJa "Arpo6uoTeK"»; MJAAJIIUNA HAyYHbIM COTPYAHUKOM JabopaTopuu
UCCIe[J0OBAaHUS W TPUMEHEHHUS] CBEPXKPUTHYECKUX QJIIOUAHBIX TEXHOJOTMA B arponuLeBbIX
6uoTexHoJIOrUsAX Bricuiell MHXKeHepHOH WIKOJBI arpo6uoTexHoIoruii ToMCKOTro rocyapCTBEHHOIO
yHUBepcuTeTa, np./lennHa 36,634050, Tomck, Poccust; Maagminii Hay4HbIM COTPY/IHUKOM J1a60paTOpUU
KJIETOYHBIX W MHUKPOQJIIOUIHBIX TexHOoJornid CHOHUPCKOr0 TOCYyAapCTBEHHOTO MeIUIIMHCKOI0
yHUBepcuTeTa, MockoBckui TpakT 2, 634050, Tomck, Poccust.

JAanunoea Eaena /l[mumpue8Ha - KanauAaT 6M0JI0THYECKUX HAYK, A0LeHT Kadeapbl PU3U0JI0TUU
pacTeHHH, OHUOTEXHOJIOTMM W OHOMHPOPMATUKH; CTAPIIMKA HAy4YHBIA COTPYAHHUK JabopaTOpUH
OUOXUMUM U MOJIEKYIASIPHOU 6U0IoTUU MHCTUTYTa GHUOJIOTUH, 3KOJIOTHUY, TTIOUBOBE/IEHUS, CETbCKOT0
Y JIeCHOTO X03s1icTBa (BbuoJiorMyecKUid MHCTUTYT); CTapIIMi HAayYHbIM COTPYAHHUKOM JabopaToOpUu
WCC/IeIOBAaHUS M TNPUMEHEHUS CBEPXKPUTUYECKUX QJIIOUIHBIX TEXHOJIOTHH B arpomHUIIeBbIX
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