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Introduction

Abiotic stress refers to a set of unfavorable non-living factors whose impact disrupts 
the physiological processes of plants, alters their metabolism, and suppresses growth and 
development. The major abiotic factors include extreme temperatures, water deficit or 
excess, soil salinization, as well as disturbances in ion balance caused by mineral deficiency or 
overaccumulation. Metals act as significant abiotic stressors: although plants require them in 
small amounts for normal growth, excessive accumulation can poison cells [1]. Metals of this 
type include iron (Fe). Within plant cells, it can exist in two oxidation states, Fe²⁺ and Fe³⁺, and 
serves as a cofactor in respiration, DNA synthesis, photosynthesis, and chlorophyll formation 
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[2]. However, under neutral and especially alkaline soil conditions, most iron exists in the form 
of poorly soluble compounds, which limits its availability to the root system. To overcome 
this problem, chelated forms of iron are widely used in crop production. In particular, the Fe-
EDTA complex stabilizes iron ions in a soluble form, prevents their precipitation, and facilitates 
their transport to plant cells. Chelates provide a convenient and effective tool for fertigation, 
alleviating iron deficiency [3]. Despite its clear advantages, an excessive influx of iron into the 
cell is associated with certain risks. One of the most serious consequences is ferroptosis, a form 
of cell death induced by iron overload [4].

Ferroptosis is an iron-dependent form of regulated necrotic cell death, triggered by excessive 
lipid peroxidation and leading to the destruction of cellular membranes [5]. Ferroptosis 
is characterized by a decrease in the level of reduced glutathione (GSH) and inactivation of 
glutathione peroxidase 4 (GPX4). Under normal conditions, GPX4 reduces lipid hydroperoxides 
to non-toxic alcohols using GSH, thereby preventing the accumulation of lipid peroxidation 
products. When ferroptosis begins, cells suppress GPX4 activity or degrade the enzyme, which 
rapidly accumulates lipid peroxides and triggers cell death. Stress induces other antioxidant 
enzymes, including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase 
(APX), which temporarily limit ROS accumulation; in plants, in particular, ethylene enhances the 
activity of these enzymes, while transcription factors of the ERF family increase the expression of 
antioxidant defense genes. Nevertheless, it is the inactivation of GPX4 that defines the specificity 
of ferroptosis, since the activation of other antioxidants reflects only a general stress response 
and does not prevent cell death [6,7]. At the same time, the molecular mechanisms underlying 
changes in the expression and activity of antioxidant enzymes in plants under ferroptosis 
conditions remain largely unexplored, highlighting the relevance of further research.

Heat shock proteins (HSPs) represent an evolutionarily conserved family of molecular 
chaperones that play a key role in maintaining protein homeostasis. Initially described as proteins 
induced by elevated temperatures, they are now known to be upregulated under a wide range 
of abiotic and biotic stresses [8,9]. During ferroptosis in animal cells, the HSP70 family exhibits 
a protective role: HSP70 has been shown to enhance GPX4 expression and antioxidant activity, 
thereby increasing resistance to ferroptosis. In contrast, HSP90 may promote ferroptosis by 
binding to timosaponin AIII, thereby inducing ubiquitination and degradation of GPX4, which 
enhances lipid peroxidation [7,10]. In plants, the direct roles of HSP70 and HSP90 in ferroptosis 
remain poorly understood and require further investigation.

Viral infections trigger ROS generation and cell death by employing virus-encoded suppressor 
proteins that inhibit RNA interference, antioxidant systems, and hormone-mediated defense 
pathways in plants. One such suppressor protein is p19, encoded by the tomato bushy stunt virus 
(TBSV). This protein binds double-stranded siRNAs, thereby suppressing post-transcriptional 
gene silencing and facilitating the spread of the viral genome within the plant. Previous studies 
have shown that p19 forms dimers and interacts with the host RNA-binding protein Hin19. The 
resulting complex plays a key role in the effective suppression of RNA interference and promotes 
viral progression in plant cells [11]. As viruses spread through plant cells, they cause significant 
changes in the activity of antioxidant enzymes. For example, cucumber mosaic virus (CMV) 
disrupts the plant’s antioxidant defense by binding its 2b protein to catalase CAT3, initiating its 
degradation via the ubiquitin–proteasome pathway. This process leads to the accumulation of 
H₂O₂ and the development of necrosis [12].

Simultaneous exposure to multiple stressors usually worsens plant damage as signaling 
pathways interact in complex ways. The relationship between viral infections and ferroptosis 
has been studied in detail in animals: viruses can both activate and suppress iron-dependent cell 
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death by altering Fe metabolism, enhancing lipid peroxidation, and influencing ROS-dependent 
mechanisms of cell death, thereby promoting either viral replication or evasion of the immune 
response [13].

In plants, these processes have been studied to a limited extent. It is known that they involve 
mechanisms similar to those in animals but also exhibit specific features, such as the presence 
of multiple GPX isoforms and the involvement of chloroplasts and peroxisomes. Suppression of 
GPX4 in Nicotiana benthamiana has been shown to enhance ferroptosis-like cell death during 
infection with a mutant tobacco mosaic virus; however, systematic data remain scarce [6]. 
Studying such interactions is essential for understanding multistress responses, plant immunity, 
and adaptation, as well as for breeding resistant cultivars. This is particularly important in the 
context of combined viral infections and toxic metals, which are critical factors for predicting 
crop yield and ensuring food security. Identifying common signaling nodes of multistress 
responses may provide a basis for discovering genetic markers of resistance [14].

Materials and research methods

Plant preparation
In this study, Nicotiana benthamiana plants were used. Soil and pots were sterilized by 

autoclaving, after which the soil was mixed with vermiculite at a ratio of 3:1 and watered every 
other day for 30 days. We grew plants under controlled conditions with a 16-hour light/8-hour 
dark photoperiod at 25°C during the day and 23°C at night.

Plant treatment
On day 30, plants were mechanically inoculated with tomato bushy stunt virus (TBSV) in 10 

mM PBS buffer (1:3). One day post-inoculation, plants were irrigated with iron chelate (Fe-EDTA) 
solutions at various concentrations: 0.05 mM, 0.1 mM, 0.5 mM, 0.8 mM, and 1 mM. Morphometric 
measurements were performed on day 7 post-inoculation (dpi). Plants were harvested, their root 
systems rinsed with water, and then fixed for measurement of shoot and root length.

Chlorophyll content determination
Chlorophyll content in plant leaves was determined according to Arnon’s method [15]. 

We measured chlorophyll using a Multiskan SkyHigh spectrophotometer (Thermo Fisher 
Scientific) with SkanIt Software at wavelengths of 664 nm and 647 nm. The contents of 
chlorophyll a, chlorophyll b, and total chlorophyll were calculated using the equations proposed 
by Lichtenthaler and Wellburn (1985) [16].

SDS-PAGE
For protein analysis, 0.1 g of plant material was collected and homogenized in 200 μL of 

extraction buffer (1×TE: 10 mM Tris, pH 7.4–7.6; 1 mM EDTA, pH 8.0). SDS-PAGE was performed 
according to the protocol developed by Laemmli (1970) using a polyacrylamide gradient gel 
with a concentration range of 5–20% [17]. The gel was prepared from a separating gel (5 mL 
30% acrylamide/bisacrylamide solution [29:1], 2.5 mL 1.5 M Tris, pH 8.8, 2.3 mL dH₂O, 100 
μL 10% SDS, 100 μL 10% APS, 5 μL TEMED) and a stacking gel (1.35 mL 30% acrylamide/
bisacrylamide solution [29:1], 1 mL 1 M Tris, pH 6.8, 7.2 mL dH₂O, 100 μL 10% SDS, 100 μL 10% 
APS, 5 μL TEMED). Samples were mixed with β-mercaptoethanol (1:3). Electrophoresis was 
carried out at 120 V, 110 mA, and 50 W using 1×TGS buffer (25 mM Tris-HCl, 192 mM glycine, 
0.1% SDS) for 2–3 hours.
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Protein transfer and immunodetection
Proteins were transferred onto nitrocellulose membranes using a Mini Trans-Blot® Cell 

(Bio-Rad). Transfer efficiency was verified by staining the membranes with Ponceau S. Non-
specific binding sites were blocked with 7.5% non-fat dry milk in TBS-Tween-20 (50 mM Tris, 
200 mM NaCl, 0.25% Tween-20). Membranes were then washed three times for 7 min each in 
1× TBS-Tween-20.

Immunodetection was performed using monoclonal primary antibodies against HSP70 
(Agrisera, #AS08371) and HSP90 (Agrisera, #AS08346), as well as polyclonal primary antibodies 
against P19. Secondary anti-rabbit antibodies (Rockland Immunochemicals, 611-1502) were 
applied. Protein bands were visualized by incubating the membranes with NBT/BCIP substrate 
in the dark for 5 min.

Native-PAGE
A 7% polyacrylamide gel was prepared under native conditions to determine enzyme activity. The 

separating gel contained 3.75 mL N3 buffer (pH 8.5; 1 M Tris base, 2 M Tris-HCl), 2.82 mL N5 buffer 
(40% acrylamide/bisacrylamide solution, 19:1), 8.44 mL dH₂O, 100 µL APS, and 5 µL TEMED. The 
stacking gel contained 5 mL N6 buffer (6.24% acrylamide/bisacrylamide solution, 4:1), 2.5 mL N4 
buffer (pH 6.9; 18 mM Tris base, 2 mM Tris-HCl), 2.5 mL dH₂O, 100 µL APS, and 5 µL TEMED.

Electrophoresis was carried out at 150 V, 120 mA, and 50 W in the UPPER buffer (pH 8.88; 50 
mM Tris, 7 mM Tris-HCl, 60 mM glycine) for 2–3 h. To determine AO activity, gels were incubated 
in a solution containing 4 mM Tris-HCl, 3 mM indole-3-carboxyaldehyde, 0.6 mM MTT, and 0.7 
mM PMS at 37 °C for 40 min [18].

Catalase activity was determined by incubating samples with 0.03% hydrogen peroxide 
solution (500 µL H₂O₂ in 49.5 mL distilled water) for 10 min. Subsequently, 0.6 g K₃[Fe(CN)₆] 
dissolved in 26.4 mL distilled water and 0.6 g FeCl₃ dissolved in 26.4 mL distilled water were 
added, and the reaction was incubated in the dark for 3 min [19].

Results 

Nicotiana benthamiana plants were inoculated with wtTBSV, followed by irrigation with Fe-
EDTA solution starting at 2 days post-inoculation (dpi) (Figure 1A). At 7 dpi, plants exhibited 
symptoms such as chlorosis and leaf wilting. Under combined stress, however, symptoms of 
viral infection were alleviated compared with control plants inoculated only with wtTBSV. The 
most pronounced improvement was observed at 0.8 mM and 1 mM Fe-EDTA.

Plants inoculated with wtTBSV displayed typical symptoms of TBSV infection, including leaf 
curling, chlorosis, growth suppression, necrotic spots, and wilting (Figure 1B). Morphometric 
analysis showed that the average shoot height of control plants was 5.0 ± 0.7 cm. Irrigation with 
Fe-EDTA at concentrations ranging from 0.05 to 1 mM did not significantly affect shoot growth 
(p > 0.05) (Figure 1C). In wtTBSV-infected plants, shoot height decreased to 4.5 ± 0.6 cm, and 
under combined stress, the reduction was more pronounced.

Analysis of root length revealed an average of 15.8 ± 4.2 cm. Fe-EDTA irrigation at 
concentrations from 0.05 to 1 mM had no significant effect compared with the control (p > 
0.05), although an increase was observed at 0.5 mM (17.1 ± 4.8 cm) and a decrease at 0.1 mM 
(13.2 ± 0.9 cm). In wtTBSV-infected plants, root length moderately decreased to 14.2 ± 2.3 cm. 
Under combined stress, root length increased to 18.9 ± 6.8 cm at wtTBSV+0.1 mM, whereas at 
wtTBSV+0.8 mM it decreased to 10.0 ± 5.2 cm. However, these changes did not reach statistical 
significance (p > 0.05).
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Note: Differences between groups were considered statistically significant at p < 0.001. Data were 
analyzed using one-way ANOVA followed by Tukey’s HSD test. All experiments included at least three 
biological replicates.

Figure 1. Morphometric parameters of Nicotiana benthamiana. (A) Day 1 after inoculation with 
wtTBSV and Fe-EDTA irrigation; (B) Day 7 after inoculation with wtTBSV and Fe-EDTA irrigation; 

(C) Morphometric measurements of plant shoots and roots

To assess the activity of the photosynthetic apparatus, the contents of chlorophyll a, 
chlorophyll b, and total chlorophyll were analyzed in N. benthamiana. It was found that infection 
with wtTBSV significantly reduced chlorophyll levels compared to control plants. Treatment 
with Fe-EDTA markedly increased chlorophyll levels, with the highest values observed at 0.1 
mM and 0.5 mM Fe-EDTA. Under combined stress, chlorophyll content was restored to control 
levels or even exceeded them (Figure 2).
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Differences between groups were considered statistically significant at p < 0.001. We 226 

performed the analysis using one-way ANOVA followed by Tukey’s HSD test. All 227 
experiments included at least three biological replicates. 228 

To determine the levels of host proteins HSP70, HSP90, and the viral RNA silencing 229 
suppressor P19, western blot analysis was performed. The detection of the viral protein 230 
P19 was carried out using polyclonal antibodies against P19. Under combined stress 231 
conditions (Fe-EDTA + wtTBSV), the level of the viral protein P19 was significantly 232 
reduced compared to the wtTBSV control (Figure 3A). In addition, the levels of host 233 
proviral heat shock proteins (HSPs) were examined. The level of HSP70 increased at Fe-234 
EDTA concentrations of 0.05 mM, 0.1 mM, and 1 mM, but decreased at 0.5 mM and 0.8 235 
mM. Under combined stress, the lowest levels were observed at 0.05 mM, 0.5 mM, and 236 
0.8 mM Fe-EDTA, whereas a significant increase was recorded at 1 mM (Figure 3B). 237 
Analysis of HSP90 revealed maximum accumulation in control plants and in response to 238 
0.05 mM Fe-EDTA, while the lowest accumulation was observed at 1 mM Fe-EDTA. 239 
Under combined stress conditions, HSP90 levels remained moderate compared to 240 
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Note: Differences between groups were considered statistically significant at p < 0.001. We performed 
the analysis using one-way ANOVA followed by Tukey’s HSD test. All experiments included at least three 
biological replicates.

Figure 2. Analysis of chlorophyll content in the leaves of N. benthamiana plants. (A) Chlorophyll a 
content; (B) Chlorophyll b content; (C) Total chlorophyll content

Differences between groups were considered statistically significant at p < 0.001. We 
performed the analysis using one-way ANOVA followed by Tukey’s HSD test. All experiments 
included at least three biological replicates.

To determine the levels of host proteins HSP70, HSP90, and the viral RNA silencing 
suppressor P19, western blot analysis was performed. The detection of the viral protein P19 
was carried out using polyclonal antibodies against P19. Under combined stress conditions (Fe-
EDTA + wtTBSV), the level of the viral protein P19 was significantly reduced compared to the 
wtTBSV control (Figure 3A). In addition, the levels of host proviral heat shock proteins (HSPs) 
were examined. The level of HSP70 increased at Fe-EDTA concentrations of 0.05 mM, 0.1 mM, 
and 1 mM, but decreased at 0.5 mM and 0.8 mM. Under combined stress, the lowest levels 
were observed at 0.05 mM, 0.5 mM, and 0.8 mM Fe-EDTA, whereas a significant increase was 
recorded at 1 mM (Figure 3B). Analysis of HSP90 revealed maximum accumulation in control 
plants and in response to 0.05 mM Fe-EDTA, while the lowest accumulation was observed at 1 
mM Fe-EDTA. Under combined stress conditions, HSP90 levels remained moderate compared 
to wtTBSV but also decreased at 1 mM Fe-EDTA, similar to the results observed with Fe-EDTA 
treatment alone (Figure 3C).
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Figure 3. Western blot analysis of P19, HSP70, and HSP90 in N. benthamiana leaves. (A) Immunoblot 
detection of the viral protein P19. (B) Immunoblot detection of HSP70. (C) Immunoblot detection 

of HSP90. Data were analyzed using Image J. All experiments included at least three biological 
replicates

Discussion 

The term ferroptosis was first described in animals as a novel form of cell death triggered 
by erastin in tumor cells [20]. Later, ferroptosis was also identified in plants [21], where it 
is activated in response to various abiotic and biotic stresses [22], including Fe²⁺ overload, 
accumulation of reactive oxygen species (ROS), and deficiencies in antioxidant defenses, 
particularly glutathione-dependent antioxidants such as GPX4 [23,24]. Lipid peroxidation in the 
membranes of mitochondria, chloroplasts, and peroxisomes, where ROS and iron-dependent 
radicals accumulate, has been shown to act as the key trigger of ferroptosis initiation [25,26]. 
Damage to membrane lipids disrupts membrane integrity and suppresses respiration and 
photosynthesis, thereby initiating a cascade of ferroptosis-like cell death.

Ferroptosis is considered a relatively recently described type of programmed cell death, and 
therefore, information about its regulation in plants under abiotic and biotic stresses remains 
fragmented. Consequently, the influence of viruses on ferroptosis is still unclear.
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Our study demonstrated that Fe-EDTA treatment significantly influenced plant development 
and the symptoms of wtTBSV infection in N. benthamiana, as well as the levels of host heat 
shock proteins (HSPs) and the viral suppressor P19.

To analyze ferroptosis-like cell death, N. benthamiana plants were treated with Fe-EDTA 
solutions at varying concentrations to determine the optimal range. Fe-EDTA was selected 
as the iron source because its chelated form ensures high bioavailability and promotes the 
accumulation of Fe²⁺ ions in plant cells. The buildup of free iron ions triggers the Fenton reaction, 
which generates hydroxyl radicals (·OH):

Subsequently, the hydroxyl radical (·OH) reacts with polyunsaturated fatty acids (PUFAs), 
generating lipid radicals. This initiates a chain reaction in which the lipid radicals propagate by 
reacting with other lipids, leading to the accumulation of reactive oxygen species (ROS) [23]. 
Ultimately, this process results in damage to organelle membranes, proteins, and DNA [24].

In the assessment of physiological and morphometric parameters, we found that the effects 
of Fe-EDTA treatment and viral infection were accompanied by symptoms such as growth 
inhibition, leaf mottling, curling, necrosis, and chlorosis (Figure 1A, B). Iron (Fe) is essential 
for many cellular functions in plants, including chlorophyll biosynthesis, photosynthesis, and 
respiration [27].  It is well established that viral infection reduces photosynthesis and causes 
severe alterations in the ultrastructure of chloroplasts [28]. Previous studies have shown 
that treatment with iron oxide nanoparticles (Fe₃O₄) at high concentrations under high light 
intensity (300 μM m⁻²⋅s⁻¹) significantly increased plant biomass, as well as the contents of 
chlorophyll a, chlorophyll b, and carotenoids in leaves. At the same time, the nanoparticles did 
not have a noticeable effect on primary photochemical processes or stomatal conductance. 
Treatment with Fe₃O₄ nanoparticles led to a reduction in malondialdehyde (MDA) levels in 
roots and leaves, indicating the absence of oxidative stress. This was supported by increased 
activity of antioxidant enzymes, such as ascorbate peroxidase (APX) and superoxide dismutase 
(SOD). The authors suggest that elevated iron content in leaves promotes higher chlorophyll 
levels and enhances the activity of enzymes such as RuBisCO, ultimately increasing the rate of 
CO₂ assimilation [29]. An increase in chlorophyll content was also observed following foliar 
application of Fe₂(SO₄)₃ and EDTA-Fe·Na fertilizers to potato (Solanum tuberosum L.) tubers 
[30]. Iron deficiency in pea (Pisum sativum L.) plants led to a reduction in chlorophyll a and b, 
accompanied by an increase in dry biomass per unit of fresh shoot weight. This resulted in a 
significant decrease in photosynthetic rate per leaf area, as well as increased stomatal resistance 
and reduced transpiration rate. However, under partial iron deficiency, the photosynthetic 
rate per leaf area was not reduced, even though chlorophyll content decreased [31]. This 
may be because the reduction in chlorophyll likely did not result from the destruction of all 
components of the photosynthetic apparatus, but rather from an adaptive response to stress 
conditions. In our study, we also observed an increase in chlorophyll content following both Fe-
EDTA treatment and combined stress from wtTBSV infection and Fe-EDTA, compared to control 
plants (Figure 2). This effect is likely due to the crucial role of iron as a component of various 
photosynthetic electron carriers, such as cytochrome (Cyt) b₆f and Cyt c₆, and as an integral 
part of both photosystem I (PSI) and photosystem II (PSII) [32–34]. Iron deficiency induces 
significant changes in the structure of the thylakoid membrane and in the core processes 
involved in photochemical energy conversion. The first transcriptomic studies conducted on 
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P. tricornutum cells under iron-deficient conditions identified novel regulators of the iron 
deficiency response, such as iron starvation-induced proteins (ISIPs) [35].

Tomato bushy stunt virus (TBSV) is a typical member of the genus Tombusvirus within the 
family Tombusviridae. The P19 protein encoded by TBSV acts as a potent suppressor of RNA 
interference (RNAi) and blocks a key post-transcriptional defense mechanism in plants. RNAi is 
a conserved eukaryotic mechanism that degrades RNA with high sequence specificity [36–38]. 
A DICER-containing complex recognizes and cleaves double-stranded RNA (dsRNA) or single-
stranded RNA (ssRNA) with hairpin structures, producing short interfering RNAs (siRNAs) of 
approximately 20–25 nucleotides. The RNA-induced silencing complex (RISC) incorporates 
these siRNAs and directs the endonucleolytic cleavage of complementary viral RNAs, thereby 
limiting viral replication. P19, however, binds viral siRNAs (vsiRNAs) with high affinity, 
preventing their incorporation into RISC. By doing so, P19 inhibits the RNAi pathway, allowing 
the virus to evade degradation [39–41].

In our study, combined stress from wtTBSV infection and Fe-EDTA treatment led to a reduction 
in the level of the viral suppressor P19 compared to virus-infected control plants. The decrease 
in P19 protein levels indicates an effective RNAi response, resulting in a reduced wtTBSV 
viral titer in N. benthamiana (Figure 3A). Interestingly, at higher Fe-EDTA concentrations, P19 
protein levels increased compared to 0.1 mM Fe-EDTA, highlighting the dose-dependent role of 
iron in regulating cellular metabolism. Similar studies in Cucumis sativus L. under combined 
stress with Glomus mosseae showed significant improvements in key physiological parameters, 
including chlorophyll content, photosynthetic rate, stomatal conductance, and accumulation 
of phenolic compounds. These results also demonstrated that combined stress increased the 
activity of antioxidant enzymes such as SOD, POD, CAT, and APX, mitigating oxidative stress and 
promoting plant health [42]. Previous studies have shown that foliar application of Fe-EDTA 
at a concentration of 3.36 mg·L⁻¹ in N. benthamiana plants infected with potato virus Y (PVY) 
also reduced symptom severity and suppressed the accumulation of viral RNA and proteins, 
particularly during the early stages of infection [43]. These findings support our results showing 
a reduction in viral titer in plants undergoing ferroptosis-like cell death. As noted earlier, viral 
infection suppresses photosynthesis. Iron treatment may assist the plant by regulating genes 
associated with cytochromes, chlorophyll, and photosystems (PSI and PSII). Similar observations 
were reported by Bwalya, Alazem, and Kim (2021), where photosynthesis-related genes (PSaC 
and ATPsyn-α) conferred resistance to soybean mosaic virus (SMV) in N. benthamiana through 
RNAi [44]. Additionally, Xu et al. (2023) employed virus-induced gene silencing (VIGS) and 
found that suppressing the expression of the NbHSP90 gene in N. benthamiana significantly 
increased PVY accumulation [43].

Heat shock proteins (HSPs), particularly HSP70, play a key role in the formation of the viral 
replication complex. HSP70 interacts with the viral protein p33 and activates RNA-dependent 
RNA polymerase (RdRp), ensuring efficient viral genome replication. HSP90 also contributes 
by stabilizing and activating the viral RdRp. Together with the cofactor CDC37, HSP90 forms 
a complex with the viral RdRp p92, which is essential for initiating replication [45–48]. The 
role of HSP proteins in host cells is critical, as they participate in protein folding, prevent the 
aggregation of denatured proteins, and maintain cellular homeostasis under stress conditions 
[9]. Analysis of HSP70 protein expression showed a significant decrease under combined stress 
compared to control plants, except for wtTBSV + 1 mM Fe-EDTA (Figure 3B). These results 
suggest possible degradation of host proteins, in which HSPs normally play a protective role, 
as also indicated by HSP70 expression under single stress with 1 mM Fe-EDTA. Interestingly, 
treatment with 0.5 mM Fe-EDTA caused a marked reduction in HSP70 expression compared to 
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control plants. Analysis of HSP90 expression revealed that under combined stress (wtTBSV + 1 
mM Fe-EDTA), its level significantly decreased (Figure 3C).

Based on all our experiments, we propose that the combined stress of wtTBSV infection 
and 1 mM Fe-EDTA causes more severe damage to plant cells. We suggest that high iron 
concentrations induce an enhanced form of programmed cell death, ferroptosis. Accumulation 
of Fe²⁺ and the activation of lipid peroxidation may trigger localized necrosis by disrupting 
cellular membranes, which in turn reduces viral titer in the plants. In contrast, lower Fe 
concentrations help maintain the photosynthetic apparatus in N. benthamiana.

Conclusion

Our study provided new insights into the role of ferroptosis-like cell death in plant-virus 
interactions with TBSV. We showed that Fe-EDTA treatment alters the accumulation of wtTBSV 
in N. benthamiana. High concentrations of Fe-EDTA induced oxidative stress and ferroptosis-
like cell death, accompanied by membrane damage, necrosis, and growth inhibition, while 
simultaneously leading to a decrease in the level of the suppressor protein P19. At the same time, 
low concentrations of Fe-EDTA maintained photosynthetic activity and alleviated symptoms. In 
addition, a decrease in HSP70 and HSP90 was observed under combined stress, suggesting a 
possible interaction of iron with host chaperones required for viral replication.

Thus, viral infection accumulation is regulated by iron availability in the cell: limited iron 
supply supports photosynthesis and RNA interference activation, whereas its excess may 
trigger ferroptosis-like cell death pathways. These findings highlight the importance of iron 
homeostasis in studying plant defense mechanisms and open perspectives for the practical 
application of iron-containing treatments to control viral diseases. However, further studies are 
needed to clarify the precise mechanisms of interaction between viral infection and ferroptosis-
like cell death in plants.
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Темір гомеостазының бұзылуы, ферроптоз тәрізді жасушалық өлімі және өсімдіктердегі 
РНҚ интерференциясы арқылы вирустық инфекцияны басуы

Д. Артықбаева1, Т. Ертаева1, С. Белгібай1, Ж. Байқараев1, Ж. Тұрарбекова1,
Ж. Масалимов1, Н. Иқсат*1

1Рүстем Омаров атындағы өсімдіктер биотехнологиясы зертханасы, биотехнология және 
микробиология кафедрасы, Л.Н. Гумилев атындағы Еуразия ұлттық университеті, 

Астана, Қазақстан

Аңдатпа. Ферроптоз-тәрізді жасушалық өлім - бұл өсімдік жасушаларында темірдің жиналуы 
мен липидтердің асқын тотығуынан қоздырылатын жаңадан сипатталған механизм. Алайда 
оның вирустық инфекциядағы рөлі әлі толық анықталмаған. Осы зерттеуде Nicotiana benthamiana 
өсімдіктеріне темірмен (Fe-EDTA) өңдеудің, wild type tomato bushy stunt virus (wtTBSV) инфекциясы 
жағдайындағы ықпалы талданды. Кешенді стресс жағдайында жүргізілген морфологиялық 
және биохимиялық талдау өсімдіктер өсуінің тежелуі, некроз, жапырақтардың сарғаюы, хлороз 
және жапырақтардың жиырылуы сияқты айқын симптомдардың байқалғанын көрсетті, ал 
супрессорлық P19 ақуызының экспрессиясы төмендеді.  Биохимиялық талдау жағынан Fe-
EDTA төмен концентрациялары өсімдіктердің фотосинтетикалық аппараттың тұрақтылығың 
қамтамасыз етіп, хлорофилл құрамын арттыратыны анықтады, ал жоғары концентрациялар 
липидтердің асқын тотығуын және ферроптоз тәрізді жасуша өлімін тудырды. Алынған 
нәтижелер темірдің артық мөлшерінде РНҚ-интерференциясының белсенуі мен ферроптоз 
тәрізді жасушалық өлімнің іске қосылатынын, сондай-ақ осы жағдайда вирустық инфекцияның 
тежелетінін дәлелдейді. Ал темірдің төмен концентрацияларында фотосинтетикалық 
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белсенділік сақталып, симптомдардың айқындылығы төмендеді. Сонымен қатар, кешенді стресс 
жағдайында HSP70 және HSP90 жылулық шок ақуыздарының деңгейі төмендегені анықталды, 
бұл микроэлементтік гомеостаздың вирус репликациясына қажетті жасушалық шаперондардың 
жұмысына араласуын көрсетуі мүмкін. Бұл зерттеу ферроптозға ұқсас жасушалық өлімнің вирус 
пен өсімдік арасындағы өзара әрекеттесудегі негізгі рөлін көрсетеді.
Түйін сөздер: ферроптоз, өсімдік вирустары, құрама стресс, белсенді оттек түрлері (БОТ), TBSV

Нарушение гомеостаза железа подавляет вирусную инфекцию посредством клеточной 
смерти, подобной ферроптозу, и РНК-интерференции в растениях

Д. Артыкбаева1, Т. Ертаева11, С. Белгибай1, Ж. Байкараев1,
Ж. Турарбекова1, Ж. Масалимов1, Н. Иксат*1

1Лаборатория биотехнологии растений имени Рустема Омарова, 
Евразийский национальный университет имени Л.Н. Гумилева, Астана, Казахстан

Аннотация. Ферроптоз-подобная клеточная гибель у растений 1 это недавно описанный 
механизм, запускаемый накоплением железа и перекисным окислением липидов, однако его 
роль в вирусной инфекции остаётся неясной. В данном исследовании было проанализировано 
влияние обработки железом (Fe-EDTA) на растения Nicotiana benthamiana, инфицированные wild 
type tomato bushy stunt virus (wtTBSV). Морфологические и биохимические анализы растений 
под воздействием комбинированного стресса показали более выраженные симптомы, такие, как 
угнетение роста растений, некроз, пожелтение листьев, хлороз и сморщивание листьев, тогда 
как экспрессия супрессорного белка P19 снижалась. Биохимический анализ выявил, что низкие 
концентрации Fe-EDTA поддерживали фотосинтетический аппарат растений и повышали 
содержание хлорофиллов, тогда как высокие концентрации индуцировали перекисное 
окисление липидов и ферроптоз-подобную гибель клеток. Результаты указывают на активацию 
РНК-интерференции и ферроптоз-подобной клеточной гибели в условиях избытка железа, при 
котором вирусная инфекция подавлялась. В то время как при низких концентрациях железа 
сохранялась фотосинтетическая активность и снижалась выраженность симптомов. Кроме того, 
было выявлено снижение уровня белков теплового шока HSP70 и HSP90 при комбинированном 
стрессе, что может отражать вмешательство микроэлементного гомеостаза в работу клеточных 
шаперонов, необходимых для репликации вируса. Это указывает на ключевую роль ферроптоз-
подобной клеточной гибели во взаимодействии вирус-растение.
Ключевые слова: ферроптоз, вирус растений, комбинированный стресс, активные формы 
кислорода (АФК), TBSV
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