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Abstract. Timely detection and accurate identification of crop pathogens
are considered fundamental components of sustainable agricultural systems
alarming prompt and effective crop protection management. The cutting-edge
CRISPR/Cas12a technology is emerging as a nucleic-acid-based platform with
high potential for rapid, sensitive, and specific phytopathogen detection. In this
study, we aimed to develop a CRISPR/Cas12a-based method to detect Fusarium
spp., targeting the acll gene. A plasmid carrying the target gene fragment was
successfully amplified using Recombinase Polymerase Amplification (RPA),
confirming the feasibility of integrating this isothermal amplification with the
CRISPR/Cas12a detection method. Optimization of the CRISPR-Cas12a reaction
revealed optimal conditions at 100 nM MbCas12a, 100 nM crRNA, and 5 uM ssDNA
reporter. Sensitivity assays demonstrated reliable detection of the acl1 gene up to
1:1000 dilution. Specificity evaluation involving different plant-pathogenic fungal
species confirmed the high specificity of the developed method. Altogether, this
study highlights the potential of the CRISPR/Cas12a-based system as a promising
diagnostic approach for agricultural applications to detect Fusarium spp.
Keywords: CRISPR, Cas12a, Fusarium, Recombinase Polymerase Amplification,
nucleic acid detection

Introduction

Food Security is one of the 17 Sustainable Development Goals (SDGs) that require substantial
efforts to address it. Sustainable agricultural production is challenged by different factors,
including plant diseases caused by diverse pathogens [1,2]. The global economic loss attributed
to plant diseases is estimated at approximately 40 billion USD annually, emphasizing the urgent
need for efficient and sustainable crop protection strategies [2]. According to the Bureau of
National Statistics of Kazakhstan (https://stat.govkz/), cereals, particularly wheat, occupy the
largest share of cultivated land, accounting for approximately 68-72% of total sown areas in
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2022-2023. However, combating factors that limit crop productivity remains a critical challenge
in agriculture, with biotic stresses such as pathogenic diseases posing significant threats to yield.

Fusarium spp. are considered one of the most destructive plant pathogens, affecting a wide
range of agricultural crops worldwide [3]. Species within this genus infect wheat, barley, rice,
tomato, and potato, causing severe yield reductions and producing toxic secondary metabolites
known as mycotoxins. Diseases like Fusarium head blight and root rot cause billions of dollars in
crop losses per annum. For instance, wheat rust and Fusarium infections alone are responsible
for 5 and 3 billion USD in annual losses, respectively [4].

Rapid and precise detection of plant pathogens is essential for sustainable agriculture and
effective crop protection [5]. Conventional detection methods include morphology- or PCR-
based approaches [6]. Such methods are often time-consuming and require well-equipped
laboratories, limiting their applications for rapid in situ diagnostics. Consequently, precise,
nucleic-acid-based, portable detection methods attract considerable interest as alternative
methods for validating plant infections under field conditions [5,6].

In recent years, molecular biology tools have advanced significantly [7], and CRISPR/Cas
systems have emerged as powerful tools not only for genome editing but also for sensitive
and specific pathogen detection [8,9]. Among CRISPR-associated nucleases, Cas12a represents
remarkable potential for diagnostics due to its ability to recognize specific DNA sequences,
process its own guide RNA (crRNA), and exhibit trans-cleavage activity toward single-stranded
DNA once activated by the target sequence [10-12]. Such characteristics are crucial for developing
portable, rapid, and sensitive detection platforms for agricultural pathogens. Moreover,
isothermal amplification techniques, like Recombinase Polymerase amplification (RPA) [13],
were developed to enable amplification of target genetic loci at relatively low temperatures
without the need for advanced laboratory equipment. Such isothermal amplification methods
integrated with CRISPR/Casl12a remarkably expand their application potential as highly
sensitive and field-deployable assays [14]. Additionally, potential coupling with lateral flow
devices or portable fluorescence readers for real-time visualization underscores their potential
for monitoring disease outbreaks in remote agricultural fields as well as for implementing early
intervention strategies and applying appropriate management strategies [15,16].

Recent studies already demonstrated the potential of CRISPR/Cas12a for detecting various
agricultural pathogens [9]. This approach was successfully applied for the detection of Alternaria
solani [17], Puccinia striiformis f. sp. tritici [18], and Phytophthora ramorum [19]. Regarding
Fusarium, the CRISPR/Cas12a method was reported for identifying Fusarium circinatum [20],
Fusarium asiaticum [21], and Fusarium graminearum [22] in different crops. Nevertheless,
further research is required to extend this approach to other agriculturally significant Fusarium
species. Therefore, the objective of the present study was to develop a CRISPR/Cas12a-based
method for the detection of Fusarium spp.

Materials and research methods

Selection of genetic locus, design of RPA primers, and crRNA

The sequence of the acll gene from the Fusarium tricinctum strain KAS:1036 (accession
number JX397819.1) was selected as the target locus. RPA primers were designed with a melting
temperature of 40-60 °C, GC content of 40-60%, and length of 30-35 bp. crRNA was designed
based on a TTTG PAM site. All designs were performed using VectorNTI software. crRNA was
transcribed in vitro using the HiScribe T7 Quick High Yield RNA Synthesis Kit and purified with the
Monarch RNA Cleanup Kit (New England Biolabs) according to the manufacturer’s instructions.
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Identification of fungal isolates
Preliminary morphology-based identification, microscopy observation, DNA extraction, and
ITS-based identification were as reported in our previous study [23].

Construction of the positive control carrying the acll gene and RPA validation

Positive control plasmids were obtained using the NEB PCR cloning kit according to the
manufacturer’s instructions. Successfully cloned plasmids were purified with the Gene]JET
Plasmid Miniprep Kit. RPA was performed following TwistAmp Basic kit official protocols
(TwistDX, Cambridge, United Kingdom). Negative control was H20 throughout all relevant
studies.

Optimization of CRISPR/Cas-12a-based reaction

Various concentrations of MbCas12a (10 nM, 50 nM, 100 nM, 250 nM, and 500 nM), crRNA
(10 nM, 50 nM, and 100 nM), and ssDNA reporter (1.0, 2.0, 3.0, 4.0, and 5.0 uM) were tested to
determine the optimal conditions. Recombinant MbCas12a protein obtained from Moraxella
bovis in our laboratory, as described previously [24], was verified by reverse-phase C18 liquid
chromatography-tandem mass spectrometry (LG-MS/MS) and employed in all corresponding
studies.

Cis-activity of MbCas1Z2a toward the acll gene

Cis-activity of MbCasl12a was assessed using purified PCR amplicons (QIAquick PCR
Purification kit, QIAQEN GmbH, Hilden, Germany) of the acll target sequence, amplified with
RPA-designed primers (described above). MbCas12a was incubated with crRNA to form a
ribonucleoprotein complex, followed by the addition of the PCR product and further incubation
at37°C. Cleavage of the target amplicon was evaluated via horizontal agarose gel electrophoresis
and visualized using a GelDoc system.

Sensitivity validation and specificity verification

Positive control plasmid was serially diluted (1:1, 1:10, 1:100, and 1:1000) and amplified via
RPA. Amplicons were analyzed by gel electrophoresis and fluorescence assays.

Various fungal plant pathogens commonly hosted wheat, such as Nigrospora oryzae, Bipolaris
sorokiniana, and 2 strains of Alternaria spp., were included to evaluate specificity. All samples
were amplified with RPA and analyzed using agarose gel and naked-eye fluorescence readout.

Results

Selection of genetic locus, design of RPA primers, and crRNA

Based on the sequence of the acll gene available in the NCBI database (accession number
JX397819.1), one set of RPA primers was designed according to the parameters described
above. The forward (RPA-Phyto-Fus-acll) and reverse primers (RPA-Phyto-Fus-acl1-RV)
were GTGTCTTGAGACAATTCCTCGTTGAGCCTT and TAATGAAGTCGACAAGGACGTTGTGGACAC,
respectively. The crRNA (Figure 1) was designed according to the TTTG PAM site in the acl1
sequence (MbCas12a-crRNA-Fus-acll: ggactctcgtctactggcgaggaaATCTACAAACAGTAGAAATTCC
CTATAGTGAGTCGTATTAGAATT).
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Figure 1. Design of the guide RNA targeting the acl1 gene

Identification of fungal isolates

A total of 12 fungal strains were isolated from cereal seeds samples [23]. BLAST analysis
of ITS sequences revealed that eight strains (4/1, 7/2, 8/1, 8/5, 8/7, 11/1, 41/1, and 42/1)
belong to Alternaria spp. and their sequences were deposited in NCBI database under accession
numbers PQ056909-PQ056916, respectively. The remaining four strains - 22/1, 465, 1/3,
and 25/1 - deposited as PQ056917-PQ056920 were identified as Nigrospora oryzae, Bipolaris
sorokiniana, Fusarium equiseti, and Fusarium acuminatum, respectively. The Fusarium strain
25/1 was selected to validate the specificity of the designed RPA primers.

Construction of a positive control carrying the acll gene and RPA validation

Amplification of the Fusarium acuminatum 25/1 strain confirmed the functionality of the
designed RPA primers (Figure 2a). The obtained PCR product was cloned into the pJET cloning
kit (Thermo Scientific), yielding four positive clones out of five tested (Figure 2b)
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Figure 2. Construction of the plasmid carrying the acll gene: (a) PCR amplification of the acl1 gene
from Fusarium strain 25/1 using RPA primers; (b) number of E. coli clones carrying plasmids with the
cloned acll gene; (c) RPA-based amplification of the acll gene in the positive control (five technical
copies)

The plasmid containing the cloned acl1 fragment was purified and subsequently used as a
positive control in all subsequent assays.

Since isothermal amplification is the crucial element to perform the CRISPR/Cas12a
methods without thermal equipment, positive control was amplified using RPA to validate
this amplification method for obtaining amplicons required by the subsequent assays. RPA
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amplification of the positive control in five technical replicates produced consistent amplicon
yields (Figure 2c), validating the suitability of RPA for generating sufficient template DNA for
CRISPR/Cas12a detection.

Optimization of CRISPR/Cas-12a-based reaction

The crucial elements of the CRISPR/Cas12a reaction include MbCas12a, crRNA, and ssDNA
reporter. Various concentrations of MbCas12a (10-500 nM), crRNA (10 nM-100 nM), and ssDNA
reporter (1.0-5.0 uM) were evaluated based on end-point fluorescence after 30 minutes of
incubation (Figure 3).

MbCasl2a concentrations, nM

crRNA concentrations, nM ssDNA concentrations, M

2 3 4

Figure 3. Optimization of CRISPR/Cas12-based reaction: (a) effect of MbCas12a concentration;
(b) effect of crRNA concentration; (c) effect of ssDNA reporter concentration
Optimal signal intensity for the naked eye was achieved using 100 nM MbCas12a, 100 nM
crRNA, and 5.0 pM ssDNA reporter.

Cis-activity of MbCas1Z2a toward the acll gene

The cis-activity of MbCas12a, i.e., its ability to cleave the target site guided by the designed
crRNA, was studied using the purified acll PCR product (~650 bp). Partial cleavage was
observed across all reaction durations ranging from 5 to 60 min (Figure 4).

Reaction time, min
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Figure 4. Evaluation of MbCas12a cis-activity using 650 bp acl1 PCR amplicon. The + lane represents
the uncleaved control (PCR amplicon without MbCas12a reaction), whereas lanes 5-60 min
correspond to reaction time intervals

Sensitivity validation and specificity verification

The analytical sensitivity and specificity of the developed method were evaluated using
serial dilutions of the plasmid template and different fungal DNA samples, respectively. Both
conventional gel electrophoresis and fluorescence signal with the naked eye assays demonstrated
a sensitivity level up to a 1:1000 dilution of the origin plasmid (Figure 5a, b).
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Figure 5. Evaluation of assay sensitivity and specificity. (a) sensitivity: gel electrophoresis results;
serial dilutions of the target DNA fragment (1:10 to 1:1000); the minus sign indicates the negative
control (H20). (b) sensitivity: fluorescence assay results (legend as in panel a).

(c) specificity: lanes 25/1,22/1, 465, 4 /1, and 42/1 correspond to Fusarium spp. positive controls:
N. oryzae, B. sorokiniana, and Alternaria spp. were tested for cross-reactivity; the minus sign indicates
the negative control (H20). (d) Specificity: fluorescence assay results (legend as in panel c)

Specificity examination confirmed high selectivity of the assay toward the acll gene: none
of the non-Fusarium fungal isolates was amplified during RPA reaction (Figure 5c). In the
fluorescence assay, only the positive control exhibited visible fluorescence, further validating
assay specificity (Figure 5d).

Discussion

The CRISPR/Cas system, originally discovered in bacteria and archaea as a form of adaptive
immunity, has rapidly developed into a powerful platform for molecular diagnostics [25]. Since
the first observation of clustered repeats in E. coli by Ishino et al. in 1987 [26], successive
studies have revealed the system’s biological function and its application potential, including
diagnostics of various pathogenic agents [8,9,25].

Among the Cas nucleases, Cas12a is particularly attractive for diagnostic purposes due to its
RNA-guided DNase activity and unique collateral (trans) cleavage property, which allows for the
detection of target DNA sequences through a simple fluorescence readout [10,27,28]. Cas12a
recognizes specific DNA targets guided by crRNA, and upon activation, it non-specifically cleaves
single-stranded DNA molecules such as fluorescent reporters [29,30]. This mechanism forms
the basis for highly sensitive detection systems that can operate under isothermal conditions.
When combined with recombinase polymerase amplification (RPA), which efficiently amplifies
DNA at constant temperatures, the Cas12a system can detect even minimal amounts of pathogen
DNA without requiring thermal cyclers or complex laboratory equipment [15]. Such features
make it a promising platform for rapid and field-adapted diagnostics.

Several recent studies have demonstrated the potential of Casl2a-based diagnostics
for plant pathogens. For example, RPA-CRISPR/Cas12a systems have been developed for
Diaporthe aspalathi and D. caulivora causing soybean stem canker [31], Verticillium dahliae
associated with wilt disease [32], and Leptosphaeria maculans responsible for phoma stem
canker in oilseed rape [30]. These methods achieved detection within 30-60 minutes and with
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sensitivities as low as a few DNA copies, showing clear applicability in agricultural pathogen
monitoring. Furthermore, CRISPR/Cas12a has been successfully used to identify several plant
viruses, including tomato mosaic virus, tomato brown rugose fruit virus, and beet necrotic
yellow vein virus, demonstrating its versatility across taxonomic groups [33,34].

In the present study, we applied this concept to develop a CRISPR/Cas12a-based diagnostic
assay targeting the acll gene to detect Fusariumspp. To the best of our knowledge, this is the
first report describing a CRISPR/Cas12a-based detection system for Fusarium spp. developed
in Kazakhstan. The designed RPA primers and crRNA enabled specific recognition of the target
fragment, with optimal reaction parameters determined for Cas12a, crRNA, and ssDNA reporter
concentrations. The assay showed both high specificity and remarkable sensitivity, detecting
target DNA dilutions up to 1:1000 of the original plasmid. Importantly, the system distinguished
Fusarium species from other common cereal-associated fungi such as Alternaria spp., Bipolaris
sorokiniana, and Nigrospora oryzae.

Altogether, our results support the potential of Cas12a-based systems for accurate, portable,
and cost-effective detection of fungal pathogens. By enabling on-site diagnostics, such
approaches could facilitate early detection and management of Fusarium-related diseases,
helping to reduce crop losses and improve yield stability. Continued optimization of reaction
conditions and integration into simple field-deployable formats, such as lateral flow strips or
smartphone-based fluorescence readers, will further expand the practical use of this method in
agricultural monitoring and plant health management.

Conclusion

The CRISPR/Cas12a-based method targeting the acl1 genetic locus was developed to detect
Fusarium spp. with high specificity and sensitivity. Integrated with the isothermal Recombinase
Polymerase Amplification and a fluorescence assay, this method demonstrates strong potential
for rapid and reliable detection of Fusarium pathogens under field conditions. The proposed
system can contribute to improved plant disease diagnostics and sustainable crop protection
practices.
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CRISPR/Cas12a-RPA integrated assay for potential rapid detection of Fusarium spp.

Fusarium spp. ’Xbl/1JaM aHbIKTayFa apHaJIFaH
CRISPR/Cas12a-RPA GipikTipisireH Tasgay aficiHiH, moTeHIMaJIbI

A.K. CarrapoBa'?, }.JK. Kakcpi6ek?, M.2K. AMaHKo10Ba'3,
A.M. laiizagunoBal, C.K. AGeabaenos*!, A.P. )Kymakaen!
¥ ammuix Buomexnonozus Opmanvirsl, Acmana, Kazakcmad,
2JLH. I'ymunee amoiHdarsl Eypasus yammulk yHugepcumemi, Acmaua, Kazakcman,
San-®apabu amsindarul Kazak yammulk yHUugepcumemi, Aamamoi, Kazakcman

Anpgartna. Erin aypy/napbiH Jlep Ke3iHJle aHbIKTAy MeH JA9J1 UJeHTUPUKALUAIAY — ayblI IIapyallbl-
JIBIFBIHIAFbl TYPAKThI KYHeJsiepAiH Heri3ri Kypamjac 6eJiiri 60JbI TaGblIabl XKoHE OCIMAIKTepAi
KeJies1 9pi THIM/II KOpFayAbl KaMTaMachi3 eTefi. ANAbIHFbI KaTapa caHanaTbiH CRISPR/Cas12a xyiteci
duTonaToreHIepAi xKoFaphl A2JIKIEH, Ce3IMTaNAbIKIIEH KoHE JKe/leJl aHbIKTayFa MYMKIH/IiK 6epeTiH
HYKJIEMH KbIIIKbLIJApbIHA HETi3/Ie/ITeH 3aMaHay ! IJ1aTGopMa peTiH/e KapKbIHAbI JaMblII KeJsie/i. OChl
3epTTeye 6i3 Fusarium TybIChIHBIH CaHbIpAyKyJlaKTapblH aHbIKTAayFa apHaJsifaH acll reHiH HbicaHa
eTkeH CRISPR/Cas12a Herisingeri agicti a3ipsiefiik. HoicaHa reH ¢parMeHTiH KaMTUTBIH IJIa3MHU/1a
PekoM6uHa3aJIbIK, [TOJIMMepa3aiblK aMminpukaius (RPA) opiciMmeH coTTi aMminoukanusaaHabl, 6y
nsotepMusiiblK amminudukanusael CRISPR/Casl2a getexkuus aficiMeH 6ipiKTipyAiH OpbIHABLIBIFBIH
pactagbl. CRISPR-Cas12a peakyusicblH OHTaWJaHAbIPY HOTHXKeciHJe eH TuiMAi mapttap 100 HM
MbCas12a, 100 HM crRNA, »kaHe 5 uM ssDNA penopTepi peTiHJe aHbIKTanAbl. Ce3iMTalAbIKTbl aHbIK-
Tay cbiHaKTaphbl acll renin 1:1000 pediHri cyWbLiTyga ceHiMAi aHbIKTayFa 6OJIATBIHBIH KOPCETTI.
Typai eciMziik maToreH/i cagblpayKyJ1aKTap TypJiepiH KaMThIFaH epeKIlesliK CbIHAKTaphl 93ipJieHTeH
9MIiCTiH »KOFaphbl epekKilesiriH gajengesi. Ocblaaiiiia, 6y 3epTTey Fusarium TybICBIHBIH, 6KiaJepiH
anbiKTay yiiH CRISPR/Cas12a HerisiHjeri *yleHiH aybla1 HapyallbLIbIFbIHA KOJIJJAHYFa apHaJIFaH
nepcrneKTUBaAJbI JUAarHOCTUKAJBIK KypaJl eKeHiH KepceTeai.

Tynin ce3gep: CRISPR, Casl2a, Fusarium, PekoMOUHa3abIK, IOIMMepa3a/blK, aMIIMPUKaLUs, HyKJIenH
KbILIKbLJIJapbIH aHBIKTAY

CRISPR/Cas12a-RPA nHTErpupoOBaHHbIA METOJ,
AJisl IOTeHnuasa 6bIcTpod AeTekuuM Fusarium spp.

A.K. CaTrrapoBa'?, }K.JK. ’Kakcei6ek'?, M.JK. AMaHKo10Ba'3,

A.M. MaiizagunoBal, C.K. AGeabraenos*!, A.P. )Kymakaen!
HayuoHaabHbill yeHmp 6uomexHoiozuu, AcmaHa, Kazaxcmau
2Egpa3sulickutl HQyuoHaAbHbIU yHUsepcumem um. J1.H. 'ymunesa, Acmana, Kasaxcmau
3Kazaxckuil HaAYUOHA/IbHLIU yHUBepcumem umeHu aab-Oapabu, Aamamsi, Kazaxcmat

AHHoTanusa. CBoeBpeMeHHOe OOHapyKeHHe U TOo4uHasl HUJAeHTUPUKalUs Bo30yAuTesell 6osie3HEN
CeJIbCKOX03MCTBEHHBIX KYJbTYp ABJAIOTCA KJ/IHYEBBIMU 3JIEMEHTAMHU YCTOWYHMBBIX arpOCUCTEM,
obecneyuBalOIMMU onepaTUBHOe U 3¢deKTUBHOe ylpaBjeHUe 3alUTON pacTeHHi. CoBpeMeHHas
TexHosoruss CRISPR/Cas12a akTWUBHO pa3BUBaeTcs Kak MaTdopMa Ha OCHOBE HYKJIEHHOBBIX
KUCJIOT C BbICOKMM IOTEHLHUAJIOM JAJs1 GbICTPOro, YyBCTBUTEJbHOIO U CHeLUUYHOrO BbISIBIEHUS
¢uTonatoreHoB. B jmaHHOM pa6oTe paspaboraH Metona Ha ocHoBe CRISPR/Casl2a mnsa jeTekuuwu
rpu6oB poja Fusarium, HaLesieHHBIN Ha reH acll. [ln1asamMuja, cofepxaitas ¢parMeHT LjeJleBOro reHa,
ObLIA YCIEIHO aMIIMGUIMPOBAaHA C HMCIOJb30BaHWEM MeToJa PeKOMOWHA3HOW MOJIMMEpPa3sHOU
ammirdukanuu (RPA), 4yTo moATBepAMJO BO3MOXHOCTb MHTErpallMu 3TOW H30TepMHUYECKOU
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amminpukanquu c MmetoaoMm getekuuu CRISPR/Casl2a. Ontumuzanus peaknuu CRISPR-Cas12a
NoKa3ajia, YTO HaWIydllihe YCJA0BUS AOCTUTAIOTCA NMpH KoHUeHTpauusax 100 HM MbCas12a, 100 uM
crRNA u 5 pM ssDNA-penopTepa. TecTbl 4UyBCTBUTE/NBLHOCTH MOKa3aJu HaJEXXHOE BhbISIBJEHUE TeHa
acll npu pasBeseHuu o 1:1000. OneHka ceqdpUIHOCTH C yYacTHeM pa3IMYHbIX GUTONATOreHHbIX
rpuboB NMOATBEPAMJIA BBICOKYIO CeJeKTUBHOCTb pa3pabOTaHHOro MeToja. B 1esoM pesyabTaThbl
vccieIOBaHUS JEMOHCTPUPYIOT NoTeHUaJ cucTeMbl Ha ocHoBe CRISPR/Cas12a kak nepcrneKTUBHOTO
JHUarHOCTUYeCKOTO UHCTPYMEHTa JJisl BbIsIBJIeHUs TPU60B poja Fusarium B cesbCKOX0351IHCTBEHHBIX
IIpMMEeHEeHHUsIX.

Kiouessblie cioBa: CRISPR, Cas12a, Fusarium, PekoM6rHa3Hast noJiMMepa3Hast aMILIdpUuKalus, AeTeK-11s
HYKJIEMHOBBIX KUCJIOT
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